

JOINT INSTITUTE FOR NUCLEAR RESEARCH

THE RARE GASES CLASTERS

E.A. Kolganova

Collaborators:

A.A. Korobitsin (BLTP JINR), A.K. Motovilov (BLTP JINR), W. Sandhas (PI Bonn Univ.)

Critical Stability 2014

12-17 octobre 2014 Santos, Brazil

dimers : He_2 , Ne_2 , Ar_2 , Kr_2 , Xe_2 , Rn_2 (6) INTERACTION POTENTIALS Homogeneous : He-Ne, He-Ar, He-Kr, He-Xe, He-Rn, Ne-Ar and etc. (15) Heterogeneous Potential models: $V(r) = 4 \varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$ - Lennard - Jones [1]: ε – scales the energy and σ – the length scale; - <u>Tang</u> - <u>Toennies</u> [2]: $V(R) = V_{rep} + V_{att} = A e^{-bR} - \sum_{n=1}^{N} f_{2n}(bR) \frac{C_{2n}}{R^{2n}}$ where A and b parameters, the C_{2n} are the dispersion coefficient, $f_{2n}(bR)$ - the damping function, Tang - Toennies which is given by the following expression: Aziz Lennard - Jones $f_{2n}(x) = 1 - e^{-x} \sum_{k=0}^{2n} \frac{x^{-k}}{k!}$ 0 V(r) [K] $-\underline{\text{Aziz}}[3]: V(x) = \varepsilon V_b(\zeta)$ -5 where $\zeta = x/r_m$, and term $V_b(\zeta)$ has the form: -10 $V_b(\zeta) = A \exp(-\alpha \zeta + \beta \zeta^2) -\left[\frac{c_{6}}{7^{6}}+\frac{c_{8}}{7^{8}}+\frac{c_{10}}{7^{10}}\right]F(\zeta)$ -15 -20 at that x is expressed in the same length units 3 5 4 r [Å] as r_m (for this case they are angstroms).

Function $F(\zeta)$ is given by the expression:

$$F(\zeta) = \begin{cases} exp[-(D/\zeta - 1)^2], & if \ \zeta \le D, \\ 1, & if \ \zeta > D. \end{cases}$$

INTERACTION POTENTIALS OF HOMOGENEOUS DIMERS

System	С ₆	C ₈	C ₁₀	A	b, a.u. ⁻¹
He - He	1,461	14,11	183,6	41,96	2,523
Ne - Ne	6,383	90,34	1536	199,5	2,458
Ar - Ar	64,30	1623	49060	748,3	2,031
Kr - Kr	129,6	4187	155500	832,4	1,865
Xe - Xe	285,9	12810	619800	951,8	1,681
Rn - Rn	420,6	19260	1067000	5565,0	1,824

Tang-Toennies model [1]:

$$V(R) = V_{rep} + V_{att} = A e^{-bR} - \sum_{n=3}^{N} f_{2n}(bR) \frac{C_{2n}}{R^{2n}}$$

where A and b parameters, the C_{2n} are the dispersion coefficient, $f_{2n}(bR)$ - the damping function, which is given by the following expression:

$$f_{2n}(x) = 1 - e^{-x} \sum_{k=0}^{2n} \frac{x^{-k}}{k!}$$

[1] K.T. Tang and J.P. Toennies // J. Chem. Phys. 118, 4976-4983, (2003)

 $^{20}Ne_{2}$

n	E (K) [5]
0	24,22 ± 0,02
1	4,405 ± 0,02
2	< 0.14

$^{4}He_{2}$

Measurements: bond length [3]
$$< R >= 52 \pm 4 \text{ Å}$$

Estimation of the binding energy and scattering length

$$\varepsilon_{d} = 1.1_{-0.2}^{+0.3} \text{ mK} \qquad l_{sc} = 104_{-18}^{+8} \text{ Å} \qquad [3]$$
$$\varepsilon_{d} = 1.3_{-0.19}^{+0.25} \text{ mK} \qquad l_{sc} = 100_{-7.9}^{+8} \text{ Å} \qquad [6]$$

[1] F.Luo et. al.// J. Chem. Phys. 98 (1993) 9687.
[4] Y.Tanaka,K.Yoshino //J.Chem.Phys.57 (1972) 2964.
[2] W.Schoellkopf et. al.// Science.266 (1994) 1345.
[5] A.Wüest, F.Merkt//J.Chem.Phys.118 (2003) 8807.
[3] R.Grisenti et. al. // Phys. Rev. Lett. 85 (2000) 2284.
[6] W.Cencek et.al. // J.Chem.Phys., 136(2012) 224303.

level	He ₂ (K)	Ne ₂ (K)	Ar ₂ (K)	Kr ₂ (K)	Xe ₂ (K)
0	0,001309	24,1316	121,5004	184,7897	267,1759
1		4,2777	83,7284	153,1110	238,6889
2		0,02215	54,0021	124,8287	212,0169
3			31,8334	99,8756	187,1428
4			16,5115	78,1658	164,0472
5			7,0383	59,5926	142,7075
6			2,1227	44,0234	123,0977
7			0,2823	31,2940	105,1879
8				21,2031	88,9437
9				13,5088	74,3252
10				7,9285	61,2863
11				4,1441	49,7742
12				1,8129	39,7280
13				0,5801	31,0784
14				0,09122	23,7471
15				0,0001393	17,6446
16					12,6781
17					8,7381
18					5,7122
19					3,4831
20					1,9286
21			100		0,9256
22					0,3511
23					0,08371
24					0,004802

Spectra of homogeneous dimers (TT potentials):

Ground states of heterogeneous dimers:

TABLE. Ground state energy of the heterogeneous rare gases dimers (in K), average distance and mean root square radius (both in Å). FIG. The wave functions of the He₂, He-Ne and Ne₂ dimers (upper) and Ar_2 , Ne₂ and Ne-Ar (lower).

Ground states of heterogeneous dimers:

А	tom	He	Ne	Ar	Kr	Xe	Rn
	E _n (K)	1.30960	3.442	9.886	0.034	0.1414	0.2749
He	<r> Å</r>	51.784	4.041	4.093	13.3545	9.8008	8.7300
	$< R^{2} > ^{1/2} Å$	70.618	4.138	4.137	15.0955	10.4618	9.1502
	E _n (K)		0.02215	0.6890	0.2628	1.0192	0.1821
Ne	<r> Å</r>		11.8246	6.8575	8.5512	7.2220	9.9060
	$< R^{2} > ^{1/2} Å$		13.0404	6.9949	8.7115	7.3383	10.1317
	E _n (K)			0.2823	0.0311	0.0262	0.0010
Ar	<r> Å</r>			9.6011	14.8778	16.2743	32.7279
	$< R^{2} > ^{1/2} Å$			9.7904	15.3308	16.7389	35.6998
	E _n (K)				0.0001	0.02957	0.0006
Kr	<r> Å</r>				53.3392	16.6931	36.4596
	$< R^{2} > ^{1/2} Å$				62.4463	17.0551	39.1313
	E _n (K)					0.004802	0.009926
Xe	<r> Å</r>					24.4651	22.0605
	$< R^{2} >^{1/2} Å$					25.2103	22.5518
	E _n (K)						0.001673
Rn	<r> Å</r>						31.1108
	$< R^{2} >^{1/2} Å$						32.0870

TABLE. Weakest state energy of the heterogeneous rare gases dimers (in K), average distance and mean root square radius (both in Å).

Three-body, theory formalism

In describing the three-body system we use the standard Jacobi coordinates [4] $x_{\alpha}, y_{\alpha}, \alpha = 1, 2, 3$, expressed in terms of the position vectors of the particles $r_i \in \mathbb{R}^3$ and their masses m_i ,

$$\begin{aligned} \boldsymbol{x}_{\alpha} &= \left[\frac{2m_{\beta}m_{\gamma}}{m_{\beta}+m_{\gamma}}\right]^{1/2} (\boldsymbol{r}_{\beta}-\boldsymbol{r}_{\gamma}) \\ \boldsymbol{y}_{\alpha} &= \left[\frac{2m_{\alpha}(m_{\beta}+m_{\gamma})}{m_{\alpha}+m_{\beta}+m_{\gamma}}\right]^{1/2} \left(\boldsymbol{r}_{\alpha}-\frac{m_{\beta}\boldsymbol{r}_{\beta}+m_{\gamma}\boldsymbol{r}_{\gamma}}{m_{\beta}+m_{\gamma}}\right) \quad \boldsymbol{y}_{\alpha} = \boldsymbol{y}_{\alpha} \quad \boldsymbol{y}_{\alpha} \quad$$

where (α, β, γ) stands for a cyclic permutation of the indices (1, 2, 3). The coordinates x_{α}, y_{α} fix the six-dimensional vector $X \equiv (x_{\alpha}, y_{\alpha}) \in \mathbb{R}^{6}$. The vectors x_{β}, y_{β} corresponding to the same point X as the pair x_{α}, y_{α} are obtained using the transformations

$$x_eta = c_{etalpha} x_lpha + s_{etalpha} y_lpha \qquad y_eta = -s_{etalpha} x_lpha + c_{etalpha} y_lpha$$

where the coefficients $c_{\beta\alpha}$ and $s_{\beta\alpha}$ fulfil the conditions $-1 < c_{\beta\alpha} < +1$ and $s_{\beta\alpha}^2 = 1 - c_{\beta\alpha}^2$ with $c_{\alpha\beta} = c_{\beta\alpha}$, $s_{\alpha\beta} = -s_{\beta\alpha}$, $\beta \neq \alpha$ and depend only on the particle masses [4]. For equal masses $c_{\beta\alpha} = -\frac{1}{2}$.

[4] - L.D.Faddeev,S.P.Merkuriev, 1993, Quantum scattering theory for several particles

When the total angular momentum L of the system is fixed, the three-body dynamics is constrained onto three-dimensional internal space [5], which can be parametrized by coordinates

$$x_{\alpha} = |\mathbf{x}_{\alpha}|, \ y_{\alpha} = |\mathbf{y}_{\alpha}|, \ z_{\alpha} = \cos\theta_{\alpha} = (\hat{\mathbf{x}}_{\alpha}, \hat{\mathbf{y}}_{\alpha})$$

For zero angular momentum the Faddeev equations in internal space are given by the set of three coupled three-dimensional equations

$$(H_{0} + V_{\alpha} - E)F_{\alpha}(x_{\alpha}, y_{\alpha}, z_{\alpha}) = -V_{\alpha} \sum_{\beta \neq \alpha} F_{\beta}(x_{\beta}, y_{\beta}, z_{\beta})$$

$$x_{\beta} = \sqrt{c_{\beta\alpha}^{2} x_{\alpha}^{2} + s_{\beta\alpha}^{2} y_{\alpha}^{2} + 2c_{\beta\alpha} s_{\beta\alpha} x_{\alpha} y_{\alpha} z_{\alpha}}$$

$$H_{0} = -\frac{\partial^{2}}{\partial x_{\alpha}^{2}} - \frac{\partial^{2}}{\partial y_{\alpha}^{2}} - (\frac{1}{x_{\alpha}^{2}} + \frac{1}{y_{\alpha}^{2}})\frac{\partial}{\partial z_{\alpha}}(1 - z_{\alpha})^{1/2}\frac{\partial}{\partial z_{\alpha}}$$

$$x_{\beta} y_{\beta} z_{\beta} = \sqrt{(c_{\beta\alpha}^{2} - s_{\beta\alpha}^{2})x_{\alpha} y_{\alpha} z_{\alpha} - c_{\beta\alpha} s_{\beta\alpha} (x_{\alpha}^{2} - y_{\alpha}^{2})}$$
or in hyperspherical coordinates
$$\rho = \sqrt{x_{\alpha}^{2} + y_{\alpha}^{2}}, \tan \theta_{\alpha} = y_{\alpha} / x_{\alpha}, \eta_{\alpha} = (\hat{x}_{\alpha}, \hat{y}_{\alpha})$$

$$(H_{0} + V_{\alpha} - E)\Phi_{\alpha}(\rho, \theta_{\alpha}, \eta_{\alpha}) = -V_{\alpha} \sum_{\beta \neq \alpha} \Phi_{\beta}(\rho, \theta_{\beta}, \eta_{\beta})$$

$$\exp(i\sqrt{E} \alpha)$$

$$\Phi(x, y, \eta) = \psi_d(x) \exp(ipy) a_0(\eta; E) + \frac{\exp(i\sqrt{E}\rho)}{\rho^{1/2}} A(\theta, \eta; E)$$

[5] - V.V.Kostrykin, A.A.Kvitsinsky, S.P.Merkuriev, Few-Body Syst. 6 (1989) 97

9

For computational purposes, one can reduce the dimension by expanding the Faddeev components into an auxiliary basis, at the expense of dealing with an infinite number of partial equations. Expanding the function F_{α} in a series of bispherical harmonics

$$F_{\alpha}(x, y, \theta) = \sum_{l, \lambda} \frac{\Phi_{l\lambda\alpha}^{(\alpha)}(x, y)}{xy} | l\lambda 0 >$$

One can obtain the partial equation

$$(H_0 + V_\alpha - E)\Phi_{l\lambda}^{(\alpha)}(x_\alpha, y_\alpha) = -V_\alpha \sum_{\beta \neq \alpha} \sum_{l'\lambda'} \int_{-1}^{1} d\eta \, h_{\lambda l'\lambda'}^{(\alpha\beta)}(x_\alpha, y_\alpha, \eta) \Phi_{l'\lambda'}^{(\beta)}(x_\beta, y_\beta)$$

$$H_0 = -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + \frac{l(l+1)}{x^2} + \frac{\lambda(\lambda+1)}{y^2}$$

$$x_{\beta} = \sqrt{c_{\beta\alpha}^2 x_{\alpha}^2 + s_{\beta\alpha}^2 y_{\alpha}^2 + 2c_{\beta\alpha}s_{\beta\alpha}x_{\alpha}y_{\alpha}\eta}$$
$$y_{\beta} = \sqrt{s_{\beta\alpha}^2 x_{\alpha}^2 + c_{\beta\alpha}^2 y_{\alpha}^2 - 2c_{\beta\alpha}s_{\beta\alpha}x_{\alpha}y_{\alpha}\eta}$$

where

Three-body, theory formalism

$$\begin{split} h_{(\alpha;l\lambda L)(\beta;l'\lambda'L)}^{L}(x,y,\eta) &= \frac{xy}{x_{\beta\alpha}(\eta)y_{\beta\alpha}(\eta)} (-1)^{l+L} \frac{(2\lambda+1)(2l+1)}{2^{\lambda+l}} \left[(2\lambda)!(2l)!(2\lambda'+1)(2l'+1) \right]^{1/2} \\ &\times \sum_{k=0}^{k_{max}} (-1)^{k}(2k+1)P_{k}(\eta) \sum_{\substack{\lambda_{1}+\lambda_{2}=\lambda, \\ l_{1}+l_{2}=l}} \frac{y^{\lambda_{1}+l_{1}}x^{\lambda_{2}+l_{2}}}{[y_{\beta\alpha}(\eta)]^{\lambda}[x_{\beta\alpha}(\eta)]^{l}} (-1)^{\lambda_{1}}c_{\beta\alpha}^{\lambda_{1}+l_{2}}s_{\beta\alpha}^{\lambda_{2}+l_{1}} \\ &\times [(2\lambda_{1})!(2l_{1})!(2\lambda_{2})!(2l_{2})!]^{-1/2} \sum_{\lambda''l''} (2\lambda''+1)(2l''+1) \begin{pmatrix} \lambda_{1} \ l_{1} \ \lambda'' \\ 0 \ 0 \ 0 \end{pmatrix} (9) \\ &\times \begin{pmatrix} \lambda_{2} \ l_{2} \ l'' \\ 0 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} k \ \lambda'' \ \lambda' \\ l_{1} \ l_{2} \ l \\ \lambda'' \ l'' \ L \end{pmatrix} \begin{cases} \lambda_{1} \ \lambda_{2} \ \lambda \\ l_{1} \ l_{2} \ l \\ \lambda'' \ l'' \ L \end{pmatrix} \end{cases}, \\ k_{max} &= \frac{1}{2}(l+\lambda+l'+\lambda'). \end{split} P_{k}(\eta) \iff \text{the Legendre polynomial of order } k \\ &x_{\beta\alpha}(\eta) &= \sqrt{c_{\beta\alpha}^{2}x^{2}+2c_{\beta\alpha}s_{\beta\alpha}xy\eta+s_{\beta\alpha}^{2}y} \\ &y_{\beta\alpha}(\eta) &= \sqrt{s_{\beta\alpha}^{2}x-2c_{\beta\alpha}s_{\beta\alpha}xy\eta+c_{\beta\alpha}^{2}y} \end{split}$$

Boundary conditions

The asymptotic condition for the partial-wave Faddeev components of the $(2+1 \rightarrow 2+1; 1+1+1)$ scattering wave function reads, (as $\rho \rightarrow \infty$ and/or $y \rightarrow \infty$)

$$\Phi_{l}(x, y; p) = \delta_{l0} \psi_{d}(x) \{ \sin(py) + \exp(ipy) [a_{0}(p) + o(y^{-1/2})] \} + \frac{\exp(i\sqrt{E}\rho)}{\sqrt{\rho}} [A_{l}(\theta) + o(\rho^{-1/2})].$$

Here ψ_d is the dimer wave function, *E* stands for the scattering energy given by $E = \varepsilon_d + p^2$ with ε_d the dimer energy, and *p* is the relative momentum conjugate to the variable *y*. The coefficient $a_0(p)$ is nothing but the elastic scattering amplitude, while the functions $A_l(\theta)$ provides us, at E > 0, with the corresponding partial-wave Faddeev breakup amplitudes. The scattering length is given by

$$l_{sc} = -\frac{\sqrt{3}}{2} \lim_{p \to 0} \frac{a_0(p)}{p}$$

E.K, A.Motovilov, S.Sofianos J.Phys.B **31**, 1279 (1998)

E (mK)	present	[11]	[12]	[13]	[14]	[15]	[16]	[17]
$ E_{4He_3} $	126.50	126.499	126.499	126.41	126.2	126.39	125.9	126.40
$ E_{4_{He_{3}}}^{*} $	2.277	2.2784	2.2779	2.271		2.268	2.282	2.265

Table 3. Calculations for binding energies of the trimer ⁴He₃ with LM2M2 potential in mK.

- [11] V. ROUDNEV, M. CAVAGNERO J. Phys. B 45,025101 (2012).
- [12] E. HIYAMA, M. KAMIMURA, Phys. Rev. A 85, 062505 (2012); Phys. Rev. A 85, 022502 (2012).
- [13] V. A. ROUDNEV, S. L. YAKOVLEV, S. A. SOFIANOS, Few-Body Systems 37, 179 (2005).
- [14] M. SALCI et al., Int. J. Quant. Chem. 107, 464 (2007).
- [15] R. LAZAUSKAS, J. CARBONELL, Phys. Rev. A 73, 062717 (2006).
- [16] E. A. KOLGANOVA, A. K. MOTOVILOV, W.SANDHAS, Few-Body Syst. 51, 249 (2011).
- [17] A. KIEVSKY et al., Few-Body Systems 51, 259 (2011).

E (mK)	present	[21]	[22]	[23]	[24]	[25]
	HFD-B	HFD-B	HFD-B	LJ	Morse	Morse
$ E_{4Ne_3} $	74.62	74.10	74.11	59.95	72.07	72.07

Table 4. Calculations for ground state energy (in K) of the trimer ²⁰Ne₃.

[21] M. SALCI et al., J. Chem. Phys. 129, 134304 (2008).

[22] H. SUNO, J. Chem. Phys. 135, 134312 (2011).

[23] D. BLUME, CH. GREENE, B.ESRY, J. Chem. Phys. 113, 2145 (2000).

[24] P.N.ROY, J. Chem. Phys. 119, 5437 (2003).

[25] M.MARQUEZ et al., J. Chem. Phys. 130, 154301 (2009).

	*	[22]
E ₀ (He ₃) HFD-B	133.0 mK	130.57 mK

V. Roudnev and M. Cavagnero //J. Phys. B 45, 025101 (2012)

³H - system

Three-body, theory

Phillips line from the original paper, showing the unexpected linear correlation

A.C. Phillips Nucl. Phys A 107, 209 (1968)

Three-body, theory $^{4}\text{He}_{2}$ - ^{4}He 1.7 F HFDBFCII 1.65 HFD-B(He) 1.6 1.55 ರ 1.5 $E_2 - E_3 \approx 1/(2m_{12}a_3^2)$ 1.45 V.Efimov, E.G.Tkachenko, LM2M2 Ø 1.4 Phys.Lett. B 157, 108 (1985) 1.35 1.18 1.2 1.22 1.16 1.24 1.26 1.14 1.28

> V.Roudnev, M.Cavagnero Phys.Rev.Lett. **108**, 110402 (2012)

ω

 $\alpha \equiv a_3 \sqrt{-\mu E_2} \propto 1/\sqrt{E_3/E_2 - 1} \equiv \omega$

Three-body, theory

$^{4}\text{He}_{2}$ - ^{4}He

$$V(x) = \lambda V_{HFD-B}(x)$$

$$\alpha \equiv a_3 \sqrt{-\mu E_2} \propto 1/\sqrt{E_3/E_2} - 1 \equiv \omega$$

E.A.K, *Few-Body Syst.* **55**, 957 (2014)

V.Roudnev, M.Cavagnero Phys.Rev.Lett. **108**, 110402 (2012)

$${}^{4}\text{He}_{2} - {}^{4}\text{He}_{2}$$

S-matrix

Three-body, theory

$\lambda = 1$

A.K.Motovilov, *Math.Nachrichten* **187**,147(1997) E.A.K, A.K.Motovilov *Phys.At.Nucl.* **60**, 235 (1997)

E.A.K., A.K.Motovilov,Y.K.Ho *Nucl.Phys.A* **684**, 623 (2001)

Fig. 1. Root locus curves of the real and imaginary parts of the scattering matrix $S_0(z)$ in case of helium trimer. The solid lines correspond to $\operatorname{Re} S_0(z) = 0$, while the tiny dashed lines, to $\operatorname{Im} S_0(z) = 0$. The Numbers 1, 2 denote the boundaries of the domains $\Pi^{(S)}$ and $\Pi^{(\Psi)}$, respectively. Complex roots of the function $S_0(z)$ are represented by the crossing points of the curves $\operatorname{Re} S_0(z) = 0$ and $\operatorname{Im} S_0(z) = 0$ and are located at $(-2.34 + i \, 0.96) \operatorname{mK}$, $(-0.59 + i \, 2.67) \operatorname{mK}$, $(2.51 + i \, 4.34) \operatorname{mK}$ and $(6.92 + i \, 6.10) \operatorname{mK}$.

 $ka_B \cot \delta(ka)$

⁴He – ⁴He₂ scattering

 $V(x) = \lambda V_c(x)$

A.Kievsky, M.Gattobigio, *Phys. Rev. A* **87**, 052719 (2013)

the same parametrization describes a very different system: nucleon-deuteron scattering below the deuteron breakup Threshold and elastic atom-dimer scattering below the dimer breakup threshold.

n – d scatteringin the doublet channel

 $ka_B \cot \delta = c_1(ka) + c_2(ka) \cot[s_0 \ln(\kappa'_*a) + \phi(ka)].$

MT I-III

Carbonell, Gignoux, Merkuriev FBS 15, 15 (1993)

Three-body, theory

resonances

Root locus curve of scattering matrix

 $\operatorname{Im} z / | \varepsilon_d |$

S-matrix root lines in nnp system

S-matrix root lines in ⁴He₃ system

Solid line - Re(S)=0, tiny dashed line – Im(S)=0

E.A.K, *Few-Body Syst.* **55**, 957 (2014)

Three-body parameter

⁴He trimer

- 0.2

- 1.0∟ - 0.4

E.Hiyama, M.Kamimura, arxiv: 1409.2501

$$N_{\rm Efi} \simeq rac{\omega_0}{\pi} \ln \left| rac{\ell_{
m sc}^{(2)}}{r_0}
ight|$$

$$\left[T + \sum_{1=i< j}^{A} \lambda V_2(r_{ij}) - E_A\right] \Psi_A = 0,$$

0.0

 $\mathrm{sgn}(a) \left(rac{|a|}{r_{\mathrm{vdW}}}
ight)^{-1/2}$

0.2

0.4

V.Efimov, Few-Body Syst. 51, 79 (2011)

BACK UP SLIDES

⁴He₃ and nnp systems

Three-body, theory resonances

⁴He₃

Three-body, theory resonances

$$E \longrightarrow z$$

$$a_0(E) \longrightarrow a_0(z)$$

$$S_0(z) = 1 + 2ia_0(z)$$

LJ potential model [1]

Ne ₂ (K)	Ar ₂ (K)	Kr ₂ (K)	Xe ₂ (K)
20,178	101,454	150,716	210,674
3,859	71,019	126,280	188,599
0,5981	47,139	104,534	168,059
	29,157	85,329	148,985
	16,334	68,552	131,357
	7,892	54,038	115,107
	2,985	41,689	100,213
	0,693	31,308	86,630
		22,780	74,270
		15,924	63,111
		10,578	53,085
		6,576	44,171
		3,723	36,279
		1,837	29,366
		0,722	23,364
		0,230	18,229
			13,916
			10,315
			7,380
			5,068

Ne ₂ (K)	Ar ₂ (K)	Kr ₂ (K)	Xe ₂ (K)
20,179	101,361	150,719	210,665
3,861	70,799	126,294	188,596
0,0429	46,863	104,542	168,051
	28,871	85,339	148,986
	16,084	68,554	131,354
	7,704	54,050	115,120
	2,865	41,685	100,226
	0,6821	31,313	86,626
	0,025	22,780	74,277
		15,925	63,114
		10,580	53,099
		6,573	44,173
		3,721	36,281
		1,836	29,368
		0,725	23,374
		0,1859	18,242
		0,014	13,909
			10,313
			7,389
			5,072
			3,295
			1,988
			1,080
			0,501
			0,178
			0,036
			6,360E-04

[1] Leither D.M., Doll J.D., Whitnell R.M. // J. Chem. Phys. 1991. Vol. 94. P. 6644.