Few-body universality and "super" Efimov effect

Yusuke Nishida (Tokyo Tech)

7th International and Interdisciplinary Workshop on the Dynamics of Critically Stable Quantum Few-Body Systems (Critical Stability 2014)

October 12-17 (2014)

Plan of this talk

Introduction on few-body universality Prediction of super Efimov effect

PRL 110, 235301 (2013)

PHYSICAL REVIEW LETTERS

Ş

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida,¹ Sergej Moroz,² and Dam Thanh Son³ ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA (Received 18 January 2013; published 4 June 2013)

3. Extension to mass imbalance mixtures

Super Efimov effect for mass imbalanced systems

Sergej Moroz 1 and Yusuke Nishida 2

¹Department of Physics, University of Washington, Seattle, Washington 98195, USA ²Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan (Dated: July 2014)

arXiv:1407.7664

week ending

7 JUNE 2013

3/32

Introduction: Few-body universality

4/32

Efimov effect (1970)

- 3 bosons
- 3 dimensions

R

s-wave resonance

Infinite bound states with exponential scaling $E_n \sim e^{-2\pi n}$

 $(22.7)^2 \times R$

Universal!

22.7×R

Efimov effect (1970)

- 3 bosons
- 3 dimensions
- s-wave resonance

Infinite bound states with exponential scaling $E_n \sim e^{-2\pi n}$

Efimov effect in other systems ? No, only in 3D with s-wave resonance

	s-wave	p-wave	d-wave	
3D	0	×	×	Y.N. & S.Tan,
2D	×	×	×	Few-Body Syst Y.N. & D.Lee Phys Rev A
1D	x	X		

6/32

Efimov effect (1970)

- 3 bosons
- 3 dimensions
- s-wave resonance

Infinite bound states with exponential scaling $E_n \sim e^{-2\pi n}$

Different universality in other systems ? Yes, super Efimov effect in 2D with p-wave !

	s-wave	p-wave	d-wave
3D	0	×	×
2D	x	! k !	×
1D	×	×	

Y.N. & S.Tan, Few-Body Syst Y.N. & D.Lee Phys Rev A

Efimov effect

3 bosons

- 3 dimensions
- s-wave resonance

exponential scaling $E_n \sim e^{-2\pi n}$

Super Efimov effect

- 3 fermions
- 2 dimensions
- p-wave resonance

"doubly" exponential $E_n \sim e^{-2e^{3\pi n/4}}$

PRL **110,** 235301 (2013)

PHYSICAL REVIEW LETTERS

week ending 7 JUNE 2013

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida,¹ Sergej Moroz,² and Dam Thanh Son³ ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA (Received 18 January 2013; published 4 June 2013)

7/32

New

Efimov effect

3 bosons

- 3 dimensions
- s-wave resonance

exponential scaling $E_n \sim e^{-2\pi n}$

Super Efimov effect

132

- 3 fermions
- 2 dimensions
- p-wave resonance

"doubly" exponential $E_n \sim e^{-2e^{3\pi n/4}}$

- Low-energy EFT for 2D p-wave scattering
- RG analysis for 3-body & 4-body couplings
 - Exact spectrum in the low-energy limit !

9/32

Prediction: Super Efimov effect

Two fermions with short-range potential

=> Effective range expansion

Cf. H.-W. Hammer & D. Lee Ann. Phys. 325, 2212 (2010)

10/32

V(r)

$$-iT = \frac{2i}{m} \frac{\vec{p} \cdot \vec{q}}{-\frac{1}{a} - \frac{m\varepsilon}{\pi} \ln\left(-\frac{\Lambda^2}{m\varepsilon}\right) + \sum_{n=2}^{\infty} c_n (m\varepsilon)^n}$$

scattering "length" effective "range"
collision energy $\varepsilon = E - \frac{k^2}{4m} + i0^+$

Two fermions with short-range potential

=> Effective range expansion

Cf. H.-W. Hammer & D. Lee Ann. Phys. 325, 2212 (2010)

11/32

V(r)

$$-iT = \frac{2i}{m} \frac{\vec{p} \cdot \vec{q}}{-\frac{1}{a} - \frac{m\varepsilon}{\pi} \ln\left(-\frac{\Lambda^2}{m\varepsilon}\right) + \sum_{n=2}^{\infty} c_n (m\varepsilon)^n}$$
resonance low-energy
(a \rightarrow 0)
collision energy $\varepsilon = E - \frac{k^2}{4m} + i0^+$

12/32

=> Effective range expansion

13/32

=> Low-energy effective field theory

$$egin{split} \mathcal{L} &= \psi^\dagger \Big(i \partial_t + rac{
abla^2}{2m} \Big) \psi + \sum_\pm \Big[\, \phi^\dagger_\pm \Big(i \partial_t + rac{
abla^2}{4m} \Big) \phi_\pm \ &+ g \, \phi^\dagger_\pm \psi \left(-i
ight) \left(
abla_x \pm i
abla_y
ight) \psi + ext{h. c.} \Big] \end{split}$$

dimer field Φ_{\pm} couples to two fermions ψ with orbital angular momentum L=±1

RG in 2-body sector

Low-energy effective field theory $\mathcal{L} = \psi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m} \right) \psi + \sum_{\pm} \left[\phi_{\pm}^{\dagger} \left(i\partial_t + \frac{\nabla^2}{4m} \right) \phi_{\pm} \right]$ + $g\phi_{\pm}^{\dagger}\psi\left(-i\right)\left(\nabla_{x}\pm i\nabla_{y}\right)\psi$ +h.c. +… irrelevant marginal coupling RG equation $\frac{dg}{ds} = -\frac{g^3}{2\pi}$ $\Rightarrow g^2(s) = \frac{1}{\frac{1}{g^2(0)} + \frac{s}{\pi}} \to \frac{\pi}{s}$ $1-\frac{g^2}{\pi}\ln\frac{\Lambda}{e^{-s}\Lambda}$ $E - \frac{k^2}{4m} + i0^+$

 $(e^{-s} \land$

logarithmical decrease toward low-energy $s \rightarrow \infty$

RG in 3-body sector

3-body problem ⇔ fermion+dimer scattering

 $\mathcal{L}_{3-\text{body}} = \underbrace{v_3}_{a=\pm} \psi^{\dagger} \phi_a^{\dagger} \phi_a \psi + \cdots \text{ irrelevant}$

marginal coupling renormalized by

RG in 3-body sector

3-body problem ⇔ fermion+dimer scattering

$$\mathcal{L}_{3-\text{body}} = \underbrace{v_3}_{a=\pm} \sum_{a=\pm}^{a=\pm} \psi^{\dagger} \phi_a^{\dagger} \phi_a \psi + \underbrace{\cdots}_{a=\pm} \text{ irrelevant}$$

marginal coupling @ low-energy limit $s \rightarrow \infty$

$$v_{3}(s) \rightarrow \frac{2\pi}{s} \left\{ 1 - \cot \left[\frac{4}{3} (\ln s - \theta) \right] \right\}$$

diverges at $\ln s = \frac{3\pi n}{4} + \theta$
 $\ln \ln \Lambda / \kappa$ non-universal
 \Rightarrow characteristic energy scales
 $E_{n} \propto \frac{\Lambda^{2}}{m} e^{-2e^{3\pi n/4+\theta}}$ Super Efimov effect !

Model confirmation

$$H = \int \frac{dk}{(2\pi)^2} \frac{k^2}{2m} \psi_k^{\dagger} \psi_k$$
Spinless fermions
with a separable potential

$$-\underbrace{v_0}_{a=\pm} \int \frac{dkdpdq}{(2\pi)^6} \psi_{\frac{k}{2}+p}^{\dagger} \chi_a(p) \psi_{\frac{k}{2}-p}^{\dagger} \times \psi_{\frac{k}{2}-q} \chi_{-a}(q) \psi_{\frac{k}{2}+q}$$
resonance (a $\rightarrow \infty$)
 $\chi_{\pm}(p) = (p_x \pm ip_y) e^{-p^2/(2\Lambda^2)}$

17/32

3-body binding energies $\lambda_n = \ln \ln (m E_n / \Lambda^2)^{-1/2}$

Solve STM equation numerically

$$\sum_{a} (p) = \int \frac{dq}{2\pi} \frac{(p+2q)_{-a}}{p^2 + q^2 + p \cdot q + \kappa^2} \int \frac{dq}{2\pi} \frac{(p+2q)_{-a}}{p^2 + q^2 + p \cdot q + \kappa^2} \int \frac{dq}{p^2 + q^2 + p \cdot q + \kappa^2} \int \frac{(2p+q)_b}{(\frac{3}{4}q^2 + \kappa^2)} \frac{(2p$$

Model confirmation

$$H = \int \frac{dk}{(2\pi)^2} \frac{k^2}{2m} \psi_k^{\dagger} \psi_k$$
Spinless fermions
with a separable potential

$$-\underbrace{v_0}_{a=\pm} \int \frac{dkdpdq}{(2\pi)^6} \psi_{\frac{k}{2}+p}^{\dagger} \chi_a(p) \psi_{\frac{k}{2}-p}^{\dagger} \times \psi_{\frac{k}{2}-q} \chi_{-a}(q) \psi_{\frac{k}{2}+q}$$
resonance (a→∞)
 $\chi_{\pm}(p) = (p_x \pm ip_y) e^{-p^2/(2\Lambda^2)}$

18/32

3-body binding energies $\lambda_n = \ln \ln (m E_n / \Lambda^2)^{-1/2}$

n	λ_n	$\lambda_n - \lambda_{n-1}$	3	7.430	2.352	
0	0.5632		N ⁴ e	9.785	2.355	
1	2.770	2.217	5	12.141	2.356	
2	5.078	2.308	∞		2.35619 ←	$3\pi/4$

=> doubly exponential scaling $~mE_n/\Lambda^2 \propto e^{-2e^{3\pi n/4+ heta}}$

RG in 4-body sector

4-body problem ⇔ dimer+dimer scattering

irrelevant

19/32

marginal couplings renormalized by

⇒ RG equations

RG in 4-body sector

4-body problem ⇔ dimer+dimer scattering

marginal couplings

L=±2 tetramers attached to every trimer with resonance energy $E_n \sim e^{-2e^{3\pi n/4 + \theta - 0.188}}$

Efimov effect

3 bosons

- 3 dimensions
- s-wave resonance

exponential scaling $E_n \sim e^{-2\pi n}$

Super Efimov effect

- 3 fermions
- 2 dimensions
- p-wave resonance

"doubly" exponential $E_n \sim e^{-2e^{3\pi n/4}}$

PRL **110,** 235301 (2013)

PHYSICAL REVIEW LETTERS

g

week ending 7 JUNE 2013

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida,¹ Sergej Moroz,² and Dam Thanh Son³ ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA (Received 18 January 2013; published 4 June 2013)

21/32

New

24/32

Extension: Mass imbalance mixtures

Super Efimov effect

- 3 fermions
- 2 dimensions
- p-wave resonance

Infinite bound states with doubly exponential scaling $E_n \sim e^{-2e^{3\pi n/4}}$

25/32

n=2

Universal ! but difficult to observe ?

n=0

10⁻⁹ m

10⁻³ m

10⁶⁰ m

Efimov effect

- 3 identical bosons
- 3 dimensions
- s-wave resonance

exponential scaling

$$\frac{E_{n+1}}{E_n} \to e^{-2\pi} \approx (22.7)^{-2}$$

$$(4.88)^{-2}$$

Efimov effect

- 3 identical bosons
- 3 dimensions
- s-wave resonance

exponential scaling

$$\frac{E_{n+1}}{E_n} \to e^{-2\pi} \approx (22.7)^{-2}$$

$(4.88)^{-2}$

for ⁶Li-¹³³Cs mixture

Super Efimov effect

27/32

- 3 identical fermions
- 2 dimensions
- p-wave resonance

"doubly" exponential

$$\frac{\ln E_{n+1}}{\ln E_n} \leftrightarrow e^{3\pi/4} \approx 10.55$$

for ⁶Li-¹³³Cs mixture

???

Mass imbalance mixtures

Low-energy limit (higher partial waves die out)

> s-wave interaction ~ 1/log(k) + p-wave resonance ~ 1/log(k)

28/32

s-wave interaction (only for bosons)

Mass imbalance mixtures

29/32

p-wave resonance observed but 2D confinement necessary

M. Repp et al, Phys. Rev. A 87, 010701(R) (2013)

Born-Oppenheimer approx.

Effective potential induced by light particle

$$V_{\text{eff}}(R)
ightarrow - rac{1}{mR^2 \ln(R/r_0)} \bigg|_{R \gg r_0}$$

$$E_n \sim e^{-rac{m\pi^2}{2M}n^2}$$

C. Gao & Z. Yu, arXiv:1401.0965 M. A. Efremov & W. P. Schleich, arXiv:1407.3352

30/32

inconsistent with our prediction for large M/m

$$E_n \sim e^{-2e^{(2m/M)\pi m}}$$

Born-Oppenheimer approx.

31/32

Crossover from Born-Oppenheimer $E_n \sim e^{-\frac{m\pi^2}{2M}n^2}$ to super Efimov $E_n \sim e^{-2e^{(2m/M)\pi n}}$ at $E \sim e^{-2M/m}$???

Summary

Super Efimov effect

- 3 fermions
- 2 dimensions
- p-wave resonance

Infinite bound states with doubly exponential scaling $E_n \sim e^{-2e^{3\pi n/4}}$

- 1. New few-body universality
- 2. RG analysis & Model confirmation
- 3. First doubly exponential scaling (?)
- 4. Easier to observe with mass imbalance
- 5. Born-Oppenheimer approximation fails