Few-body universality and "super" Efimov effect

Yusuke Nishida (Tokyo Tech)

7th International and Interdisciplinary Workshop on the Dynamics of Critically Stable Quantum Few-Body Systems (Critical Stability 2014)

October 12-17 (2014)

/32 Plan of this talk ²

 A canonical example of such topological superconductors \mathcal{A} is a p-wave paired state of spinless fermions in two

1. Introduction on few-body universality 2. Prediction of super Efimov effect

PRL 110, 235301 (2013) PHYSICAL REVIEW LETTERS week ending week ending

 \mathcal{G}

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida, 1 Sergej Moroz, 2 and Dam Thanh Son 3

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA (Received 18 January 2013; published 4 June 2013)

We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a

3. Extension to mass imbalance mixtures xtension to mass imbal body resonances associated with every three-body bound state at E^ðn^Þ ⁴ / expð%2e³!n=4þ"%0:¹⁸⁸Þ. These

with rotation and parity symmetries is

density that includes up to marginal couplings consistent

Super Efimov effect for mass imbalanced systems

 $Sergej$ Moroz¹ and Yusuke Nishida²

¹Department of Physics, University of Washington, Seattle, Washington 98195, USA ε because the superconductors because \mathcal{L} and ε $Department$ of Pnysics, 10ky0 Institute of 1ec. $f(x)$ for fault $f(x)$ R beams, washington golds, σ *n* 2 Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan $(1y 2014)$ (Dated: July 2014)

We study two species of particles in two dimensions interacting by isotropic short-range potentials

arXiv:1407.7664

7 JUNE 2013

/32 3

Introduction: Few-body universality

22.7×R

... en 54, 74, 1...

Universal !

4/32

Efimov effect (1970)

- **3 bosons**
- **3 dimensions**

R

Infinite bound states with exponential scaling • s-wave resonance $E_n \sim e^{-2\pi n}$

(22.7)2 ×R

Efimov effect (1970)

- **3 bosons**
- **3 dimensions**
- **s-wave resonance**

Infinite bound states with exponential scaling $E_n \sim e^{-2\pi n}$

Efimov effect in other systems ? No, only in 3D with s-wave resonance

/32

Efimov effect (1970)

- **3 bosons**
- **3 dimensions**
- **s-wave resonance**

Infinite bound states with exponential scaling $E_n \sim e^{-2\pi n}$

Different universality in other systems ? Yes, super Efimov effect in 2D with p-wave !

Y.N. & S.Tan, Few-Body Syst Y.N. & D.Lee Phys Rev A

Efimov effect

• 3 bosons

- **3 dimensions**
- **s-wave resonance**

exponential scaling

Super Efimov effect

- **3 fermions**
- **2 dimensions**
- **p-wave resonance**

 $E_n \sim e^{-2\pi n}$ $E_n \sim e^{-2e^{3\pi n/4}}$ **"doubly" exponential**

PRL 110, 235301 (2013) PHYSICAL REVIEW LETTERS week ending veek ending

7 JUNE 2013

 \mathcal{L}

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida,¹ Sergej Moroz,² and Dam Thanh Son³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA (Received 18 January 2013; published 4 June 2013)

We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a

/32

New !

Efimov effect

• 3 bosons

- **3 dimensions**
- **s-wave resonance**

exponential scaling

Super Efimov effect

/32

New !

- **3 fermions**
- **2 dimensions**
- **p-wave resonance**

 $E_n \sim e^{-2\pi n}$ $E_n \sim e^{-2e^{3\pi n/4}}$ **"doubly" exponential**

- **Low-energy EFT for 2D p-wave scattering**
- **RG analysis for 3-body & 4-body couplings => Exact spectrum in the low-energy limit !**

/32 9

Prediction: Super Efimov effect

Two fermions with short-range potential example to the V(r)

=> Effective range expansion

Cf. H.-W. Hammer & D. Lee Ann. Phys. 325, 2212 (2010)

$$
-iT = \frac{2i}{m} \frac{\vec{p} \cdot \vec{q}}{-\frac{1}{\pi} - \frac{m\epsilon}{\pi} \ln \left(-\frac{\Lambda^2}{m\epsilon}\right) + \sum_{n=2}^{\infty} c_n \left(m\epsilon\right)^n}
$$
\nscattering "length" effective "range"
\ncollision energy
$$
\epsilon = E - \frac{k^2}{4m} + i0^+
$$

Two fermions with short-range potential example to the V(r)

=> Effective range expansion

Cf. H.-W. Hammer & D. Lee Ann. Phys. 325, 2212 (2010)

$$
-iT = \frac{2i}{m} \frac{\vec{p} \cdot \vec{q}}{-\frac{1}{\vec{a}} - \frac{m\epsilon}{\pi} \ln\left(-\frac{\Lambda^2}{m\epsilon}\right) + \sum_{n=2}^{\infty} c_n \, (m\epsilon)^n}
$$

resonance
(a~~3~~∞)
collision energy $\epsilon = E - \frac{k^2}{4m} + i0^+$

/32

=> Effective range expansion

$$
-iT \rightarrow -\frac{2\pi \vec{p} \cdot \vec{q}}{m^2 \ln\left(-\frac{\Lambda^2}{me}\right)} \times \frac{i}{E - \frac{k^2}{4m} + i0^+}
$$

= (ig)²p·q propagator of dimer

/32

=> Low-energy effective field theory

$$
\mathcal{L} = \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2m} \right) \psi + \sum_{\pm} \left[\phi^{\dagger}_{\pm} \left(i \partial_t + \frac{\nabla^2}{4m} \right) \phi_{\pm} \right.
$$

$$
+ g \phi^{\dagger}_{\pm} \psi \left(-i \right) \left(\nabla_x \pm i \nabla_y \right) \psi + \text{h.c.} \Big]
$$

dimer field Φ**± couples to two fermions** ψ **with orbital angular momentum L=±1**

¹⁴ RG in 2-body sector

 \rightarrow **marginal coupling** $\Rightarrow g^2(s) = \frac{1}{\frac{1}{g^2(0)} + \frac{s}{\pi}}$ \rightarrow π *s* **Low-energy effective field theory** $1 - \frac{g^2}{\pi}$ $\ln \frac{\Lambda}{e^{-s}}$ $e^{-s}\Lambda$ $E - \frac{k^2}{4m}$ + *i*0⁺ **RG equation** $\frac{dg}{dx}$ *ds* $=-\frac{g^3}{2\pi}$ 2π $\mathcal{L} = \psi^{\intercal}$ $\overline{1}$ $i\partial_t$ + ∇^2 2*m* ! ψ $+$ $\boldsymbol{\nabla}$ *±* ſ ϕ_+^{\intercal} *±* $\overline{1}$ $i\partial_t$ $+$ ∇^2 4*m* ! ϕ_{\pm} $+ (g \phi_{\pm}^{\dagger} \psi (-i) (\nabla_x \pm i \nabla_y) \psi + \text{h.c.}$ 1 $+ \cdots$ \rightarrow **irrelevant**

(e-sΛ**<p<**Λ **integrated out)**

logarithmical decrease toward low-energy s→**∞**

¹⁵ RG in 3-body sector

3-body problem ⇔ fermion+dimer scattering

 $\psi^{\dagger} \phi^{\dagger}_a \phi_a \psi + \cdots$

=

16

 3π

marginal coupling renormalized by

 $\boldsymbol{\nabla}$

a=±

 $\mathcal{L}_{3-body} = v_3$

} **irrelevant**

/32

 3π

 $g^2v_3 +$

2

 v_3^2

 3π

 $g^4-\frac{11}{3\pi}$

¹⁶ RG in 3-body sector

3-body problem ⇔ fermion+dimer scattering

$$
\mathcal{L}_{3-body} = \underbrace{v_3}_{a=\pm} \sum \psi^{\dagger} \phi^{\dagger}_a \phi_a \psi + \underbrace{\cdots}_{irrelevant}
$$

marginal coupling @ low-energy limit s→**∞**

$$
v_3(s) \rightarrow \frac{2\pi}{s} \left\{ 1 - \cot \left[\frac{4}{3} (\ln s - \theta) \right] \right\}
$$

diverges at $\ln s = \frac{3\pi n}{4} + \theta$
 $\ln \ln \Lambda/\kappa$ non-universal ⁻¹⁰
 $= \Rightarrow$ characteristic energy scales
 $E_n \propto \frac{\Lambda^2}{m} e^{-2e^{3\pi n/4 + \theta}}$ Super Efimov effect !

¹⁷ Model confirmation

$$
H = \int \frac{dk}{(2\pi)^2} \frac{k^2}{2m} \psi_k^{\dagger} \psi_k
$$
 with a separable potential
\n
$$
-\omega \sum_{a=\pm} \int \frac{dkdpdq}{(2\pi)^6} \psi_{\frac{k}{2}+p}^{\dagger} \chi_a(p) \psi_{\frac{k}{2}-p}^{\dagger} \times \psi_{\frac{k}{2}-q} \chi_{-a}(q) \psi_{\frac{k}{2}+q}
$$

\nresonance (a~~3~~∞) $\chi_{\pm}(p) = (p_x \pm ip_y) e^{-p^2/(2\Lambda^2)}$

/32

3-body binding energies $\lambda_n = \ln \ln (mE_n/\Lambda^2)^{-1/2}$

=> solve STM equation numerically

$$
\frac{Z_{a}(p)}{Z_{a}(p)} \leq \frac{\int \frac{dq}{2\pi} \frac{(p+2q)_{-a}e^{-(5p^{2}+5q^{2}+8p\cdot q)/(8\Lambda^{2})}}{p^{2}+q^{2}+p\cdot q+\kappa^{2}}}{\sum_{\substack{b=\pm(2p+q)_{b} \ (2a+2r)^{2} \ (2a^{2}+r^{2})/\Lambda^{2} \ E_{1}[(\frac{3}{4}q^{2}+r^{2})/\Lambda^{2}]}}}
$$

¹⁸ Model confirmation

$$
H = \int \frac{dk}{(2\pi)^2} \frac{k^2}{2m} \psi_k^{\dagger} \psi_k
$$
 with a separable potential
\n
$$
-\omega_0 \sum_{a=\pm} \int \frac{dkdpdq}{(2\pi)^6} \psi_{\frac{k}{2}+p}^{\dagger} \chi_a(p) \psi_{\frac{k}{2}-p}^{\dagger} \times \psi_{\frac{k}{2}-q} \chi_{-a}(q) \psi_{\frac{k}{2}+q}
$$

\nresonance (a~~3~~∞) $\chi_{\pm}(p) = (p_x \pm ip_y) e^{-p^2/(2\Lambda^2)}$

/32

3-body binding energies $\lambda_n = \ln \ln (m E_n / \Lambda^2)^{-1/2}$

=> doubly exponential scaling $mE_n/\Lambda^2 \propto e^{-2e^{3\pi n/4+\theta}}$

19/32 RG in 4-body sector

4-body problem ⇔ dimer+dimer scattering

irrelevant

marginal couplings renormalized by

=> RG equations

²⁰ RG in 4-body sector

4-body problem ⇔ dimer+dimer scattering

marginal couplings

L=±2 tetramers attached to every trimer with resonance energy $E_n \sim e^{-2e^{3\pi n/4 + \theta - 0.188}}$

21/32 Efimov vs super Efimov

Efimov effect

• 3 bosons

- **3 dimensions**
- **s-wave resonance**

exponential scaling

Super Efimov effect

- **3 fermions**
- **2 dimensions**
- **p-wave resonance**

"doubly" exponential $E_n \sim e^{-2\pi n}$ $E_n \sim e^{-2e^{3\pi n/4}}$

PRL 110, 235301 (2013) PHYSICAL REVIEW LETTERS week ending veek ending

7 JUNE 2013

 \mathcal{L}

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions

Yusuke Nishida,¹ Sergej Moroz,² and Dam Thanh Son³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Department of Physics, University of Washington, Seattle, Washington 98195, USA ³ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA (Received 18 January 2013; published 4 June 2013)

We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a

New !

Efimov vs super Efimov

10-9 m 10-3 m 1060 m

Efimov vs super Efimov

24/32

Extension: Mass imbalance mixtures

25/32 Efimov vs super Efimov

Super Efimov effect

- **3 fermions**
- **2 dimensions**
- **p-wave resonance**

Infinite bound states with doubly exponential scaling $E_n \sim e^{-2e^{3\pi n/4}}$

n=2

n=1 but difficult to observe ?Universal !

n=0

10-9 m 10-3 m 1060 m

²⁶ Efimov vs super Efimov

Efimov effect

- **3 identical bosons**
- **3 dimensions**
- **s-wave resonance**

exponential scaling

 $(4.88)^{-2}$

for 6Li-133Cs mixture

²⁷ Efimov vs super Efimov

Efimov effect

- **3 identical bosons**
- **3 dimensions**
- **s-wave resonance**

exponential scaling

$$
\frac{E_{n+1}}{E_n} \leq e^{-2\pi} \approx (22.7)^{-2} \qquad \frac{\ln E_{n+1}}{\ln E_n}
$$

$(4.88)^{-2}$

for 6Li-133Cs mixture

Super Efimov effect

/32

- **3 identical fermions**
- **2 dimensions**
- **p-wave resonance**

"doubly" exponential

$$
\frac{\ln E_{n+1}}{\ln E_n} \Longleftrightarrow e^{3\pi/4} \approx 10.55
$$

???

for 6Li-133Cs mixture

28/32 Mass imbalance mixtures

Low-energy limit (higher partial waves die out)

s-wave interaction ~ 1/log(k) + p-wave resonance ~ 1/log(k)

s-wave interaction (only for bosons)

²⁹ Mass imbalance mixtures

/32

• p-wave resonance observed but 2D confinement necessary

 M. Repp et al, Phys. Rev. A 87, 010701(R) (2013)

30/32 Born-Oppenheimer approx.

Effective potential induced by light particle

$$
V_{\rm eff}(R) \rightarrow -\frac{1}{mR^2 \ln(R/r_0)}\bigg|_{R \gg r_0}
$$

$$
E_n \sim e^{-\frac{m\pi^2}{2M}n^2}
$$

C. Gao & Z. Yu, arXiv:1401.0965 M. A. Efremov & W. P. Schleich, arXiv:1407.3352

inconsistent with our prediction for large M/m

$$
E_n \sim e^{-2e^{(2m/M)\pi n}}
$$

31/32 Born-Oppenheimer approx.

to super Efimov $E_n \sim e^{-2e^{(2m/M)\pi n}}$ at $E \sim e^{-2M/m}$???

32/32 Summary

Super Efimov effect

- **3 fermions**
- **2 dimensions**
-

Infinite bound states with doubly exponential • p-wave resonance **Scaling** $E_n \sim e^{-2e^{3\pi n/4}}$

- **1. New few-body universality**
- **2. RG analysis & Model confirmation**
- **3. First doubly exponential scaling (?)**
- **4. Easier to observe with mass imbalance**
- **5. Born-Oppenheimer approximation fails**