

LIGHT NUCLEI IN A QUIRKY WORLD

U. van Kolck Institut de Physique Nucléaire d'Orsay and University of Arizona

Supported by CNRS and US DOE

Outline

- QCD at Low Energies and the Lattice
- Pionless Effective Field Theory
- EFT for Lattice Nuclei
- Outlook(/Extrapolation in Pion Mass)
- Conclusion

Derivation of nuclear physics consistent with Standard Model (SM) of particle physics

- o correct symmetries
- o systematic

- Nucleus as the simplest complex system: quarks and gluons interacting strongly, yet exhibiting many regularities
 - QCD at large distances an unsolved part of the SM
 - tools for non-perturbative quantum (field) theories, e.g. cold atoms
- Nucleus as a laboratory: properties of the SM and beyond
 - nuclear matrix elements for symmetry tests
 - reaction rates for nucleosynthesis
 - equation of state for stellar structure
 - variation of parameters for cosmology

QCD

nucleon

$$1/m_{\pi} \cong 1.4 \text{ fm} \quad \bullet$$

nucleus

$$\frac{1/m_{\pi}}{R} \approx 1.4 \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \rho \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{m_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{m_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{m_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{m_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{m_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3} \text{ fm} \quad \longleftarrow \quad \mathbf{R} \sim \frac{1}{2} \left(\frac{m_{\pi}}{f_{\pi}}\right) A^{1/3} / \frac{m_{\pi}}{f_{\pi}} \approx 1.2 A^{1/3$$

Lattice QCD + Effective Field Theory

$$\left(\begin{array}{c} T = T^{(\infty)}(Q \sim m \ll M) \propto \sum_{\nu=\nu_{\min}}^{\infty} \left[\frac{Q}{M} \right]^{\nu} \sum_{i} \tilde{c}_{\nu,i}(\Lambda) F_{\nu,i}\left(\frac{Q}{m}; \frac{Q}{\Lambda} \right) \\ \begin{array}{c} \text{light hard scales scales} \\ \text{scales scales} \end{array} \right)^{\nu=\nu_{\min}} \left[\begin{array}{c} \frac{Q}{M} \\ \frac{Q}{M} \end{array} \right]^{\nu} \sum_{i} \tilde{c}_{\nu,i}(\Lambda) F_{\nu,i}\left(\frac{Q}{m}; \frac{Q}{\Lambda} \right) \\ \begin{array}{c} \text{"low-energy non-analytic, constants" from loops } \\ \text{counting index} \end{array} \right)^{\nu=\nu_{\min}} \left[\begin{array}{c} \frac{Q}{M} \\ \frac{Q}{M} \end{array} \right]^{\nu} \sum_{i} \tilde{c}_{\nu,i}(\Lambda) F_{\nu,i}\left(\frac{Q}{m}; \frac{Q}{\Lambda} \right) \\ \begin{array}{c} \frac{Q}{M} \\ \frac{Q}{M} \\ \frac{Q}{M} \end{array} \right]^{\nu} \sum_{i} \tilde{c}_{\nu,i}(\Lambda) F_{\nu,i}\left(\frac{Q}{M}; \frac{Q}{\Lambda} \right) \\ \begin{array}{c} \frac{Q}{M} \\ \frac{$$

For $Q \sim m$, truncate consistently with RG invariance $T = T^{(\overline{\nu})} \left[1 + \mathcal{O} \left(\frac{Q}{M}, \frac{Q}{\Lambda} \right) \right]$ \longrightarrow $\frac{\Lambda}{T^{(\overline{\nu})}} \frac{\partial T^{(\overline{\nu})}}{\partial \Lambda} = \mathcal{O} \left(\frac{Q}{\Lambda} \right) \ll 1$ controlledmodel independent

 $\frac{\text{If so}}{\text{realistic full error estimate comes from variation } \Lambda \in [M,\infty)$

match > lattice QCD amplitudes > *most general* hadronic Hamiltonian with QCD symmetries

Lattice QCD

path integral solved with Monte Carlo methods, typically for unrealistically large quark masses

$$\cot \delta(\mathbf{E}) = \frac{4}{\sqrt{mEL}} \left[\pi \sum_{\mathbf{n}}^{|\mathbf{n}| < \mathbf{L}/l} \frac{1}{(2\pi\mathbf{n})^2 - mEL^2} - \frac{\mathbf{L}}{l} \right]$$

Lüscher '91

nucleon

9

Experimental and LQCD data

m_{π}	140	510	805
Nucleus	[Nature]	[5]	[6]
n	939.6	1320.0	1634.0
р	938.3	1320.0	1634.0
nn	-	7.4 ± 1.4	15.9 ± 3.8
D	2.224	11.5 ± 1.3	19.5 ± 4.8
^{3}n	-		
$^{3}\mathrm{H}$	8.482	20.3 ± 4.5	53.9 ± 10.7
$^{3}\mathrm{He}$	7.718	20.3 ± 4.5	53.9 ± 10.7
$^{4}\mathrm{He}$	28.30	43.0 ± 14.4	107.0 ± 24.2
$^{5}\mathrm{He}$	27.50		
$^{5}\mathrm{Li}$	26.61	[5] Yamaz	zaki <i>et al.</i> '12
⁶ Li	32.00	[6] Beane	. et al. '12

Beane et al. '13

 $a^{(^{1}S_{0})} = 2.33^{+0.19+0.27}_{-0.17-0.20} \text{ fm} , r^{(^{1}S_{0})} = 1.130^{+0.071+0.059}_{-0.077-0.063} \text{ fm}$ $a^{(^{3}S_{1})} = 1.82^{+0.14+0.17}_{-0.13-0.12} \text{ fm} , r^{(^{3}S_{1})} = 0.906^{+0.068+0.068}_{-0.075-0.084} \text{ fm}$

Scales (MeV)

m_N	940	1320	1630
$\sqrt{2m_N(m_\Delta-m_N)}$	750	890	765
m_{π}	140	500	800
$\sqrt{2m_N B/A} \left(A = 2 \mapsto 4\right)$	$45 \mapsto 115$	$130 \mapsto 170$	$185 \mapsto 300$

 $\aleph \equiv \sqrt{m_N B} \ll M \equiv m_\pi \lesssim M_{QCD}$

Pionless EFT $Q \sim \aleph \ll M$

- degrees of freedom: nucleons
- symmetries: Lorentz, P, T

$$\begin{aligned} \mathcal{L}_{EFT} &= N^{+} \left(i \partial_{0} + \frac{\nabla^{2}}{2m_{N}} \right) N - \frac{C_{0}}{2} N^{+} N N^{+} N - \frac{D_{0}}{6} N^{+} N N^{+} N N^{+} N \\ &+ N^{+} \frac{\nabla^{4}}{8m_{N}^{3}} N - \frac{C_{2}}{4} N^{+} N \nabla^{2} N^{+} N + \dots \end{aligned} \qquad \left(\begin{array}{c} \text{omitting} \\ \text{spin, isospin} \end{array} \right) \end{aligned}$$

• expansion in:
$$\frac{Q}{M} = \begin{cases} Q/m_N & \text{non-relativistic} \\ Q/m_{\pi}, \cdots & \text{multipole} \end{cases}$$

Universality: first orders apply also to neutral atoms

$$m_{\pi} \rightarrow 1/l_{vdW}$$
 where $V(r) = -\frac{l_{vd}^4}{2m_d}$

Bedaque, Hammer + v.K. '99 '00 Bedaque, Braaten + Hammer '01

+...

in each S-wave channel with shallow b.s.

$$\frac{m_N \Lambda}{4\pi} C_0(\Lambda) = -\left(\# - \frac{4\pi}{m_N \Lambda C_0^{(R)}} \right)^{-1} + \dots$$
regularization-dependent numbers
$$\frac{4\pi \Lambda}{m_N} \frac{C_2(\Lambda)}{C_0^2(\Lambda)} = \# + \frac{4\pi \Lambda}{m_N} \frac{C_2^{(R)}}{C_0^{(R)2}} + \dots$$

$$\frac{4\pi \Lambda}{m_N} \frac{C_2(\Lambda)}{C_0^2(\Lambda)} = \# + \frac{4\pi \Lambda}{m_N} \frac{C_2^{(R)}}{C_0^{(R)2}} + \dots$$

18

No 4-body force at LO ??

Experimental and LQCD data

	m_{π}	140	510	805	
	Nucleus	[Nature]	[5]	[6]	
١	n	939.6	1320.0	1634.0	
LO pionless fit: 🚽	р	938.3	1320.0	1634.0	
	nn	-	7.4 ± 1.4	15.9 ± 3.8	
m_N, C_{01}, C_{10}, D_1	D	* 2.224	11.5 ± 1.3	19.5 ± 4.8	
Stetcu, Barrett + v.K. '06	³ n	-			
	$^{3}\mathrm{H}$	★ 8.482	20.3 ± 4.5	53.9 ± 10.7	
	$^{3}\mathrm{He}$	7.718	20.3 ± 4.5	53.9 ± 10.7	
	$^{4}\mathrm{He}$	* 28.30	43.0 ± 14.4	107.0 ± 24.2	
L	$^{5}\mathrm{He}$	27.50			
	⁵ Li	26.61	[5] Yamaz	zaki <i>et al.</i> '12	
	⁶ Li	32.00	[6] Beane	. <i>et al.</i> '12	
				↓	Beane <i>et al.</i> '13
	$a^{(1S_0)}$	$= 2.33^{+0}_{-0}$	$^{0.19+0.27}_{0.17-0.20}$ fm	$, r^{(1S_0)} =$	$1.130^{+0.071+0.059}_{-0.077-0.063}$ fm
	$a^{(3S_1)}$	$= 1.82^{+0}_{-0}$).14+0.17).13-0.12 fm	, $r^{(^{3}S_{1})} =$	$0.906^{+0.068}_{-0.075}{}^{+0.068}_{-0.084}~{\rm fm}$
			A -		

Mueller *et al.* '99 nuclear matter Lee *et al.* '05 few nucleons

Lattice Box

$$\cot \delta(\boldsymbol{E}) = \frac{4}{\sqrt{m_N \boldsymbol{E} \boldsymbol{L}}} \left[\pi \sum_{\mathbf{n}}^{|\mathbf{n}| < \boldsymbol{L}/l} \frac{1}{(2\pi \mathbf{n})^2 - m_N \boldsymbol{E} \boldsymbol{L}^2} - \frac{\boldsymbol{L}}{l} \right]$$

Lüscher '91

Stetcu *et al.* '06

IR cutoff

finite nuclei

Stetcu, Barrett + v.K. '06

(parameters fitted to d, t, α ground-state binding energies)

Pionless EFT: LO

Experimental and LQCD data

				_		
m_{π}	140	510	805	_		
Nucleus	[Nature]	[5]	[6]			
n	939.6	1320.0	1634.0		LO pionless fit:	
р	938.3	1320.0	1634.0	×		
nn	-	7.4 ± 1.4	15.9 ± 3.8	*	m_N, C_{01}, C_{10}, D_1	
D	2.224	11.5 ± 1.3	19.5 ± 4.8	*	Barnea Contessi Gazit	
^{3}n	-				Pederiva + v.K. '13	
$^{3}\mathrm{H}$	8.482	20.3 ± 4.5	53.9 ± 10.7	-		
$^{3}\mathrm{He}$	7.718	20.3 ± 4.5	53.9 ± 10.7	× _		
$^{4}\mathrm{He}$	28.30	43.0 ± 14.4	107.0 ± 24.2			
$^{5}\mathrm{He}$	27.50					
⁵ Li	26.61	[5] Yamaz	zaki <i>et al.</i> '12			
⁶ Li	32.00	[6] Beane	e et al. '12			
			1	-		
			↓		Beane <i>et al.</i> '13	
$a^{(1S_0)}$	$= 2.33^{+0}_{-0}$	$^{0.19+0.27}_{0.17-0.20} { m fm}$	$, r^{(1S_0)} =$	= 1	$.130^{+0.071}_{-0.077}{}^{+0.059}_{-0.063}$ fm	
$a^{(^{3}S_{1})}$	$= 1.82^{+0}_{-0}$	$^{0.14+0.17}_{0.13-0.12} { m fm}$	$, r^{(^{3}S_{1})} =$	= 0	$.906^{+0.068}_{-0.075}$ $^{+0.068}_{-0.075}$ fm	
1		A -		1	and the second s	

Ab initio methods employed

Effective-Interaction Hyperspherical Harmonics (EIHH) Barnea et al. '00' 01

- ✓ hyperspherical coordinates: hyperradius + 3A-4 hyperangles
- ✓ model space: hyperangular momentum $K ≤ K_{max}$
- ✓ wavefunction: expanded in antisymmetrized spin/isospin states
- ✓ effective interaction: Lee-Suzuki projection to subspace "in medium"
- ✓ extrapolation: K_{max} → ∞

Auxiliary-Field Diffusion Monte Carlo (AFDMC)

Schmidt + Fantoni '99

- \checkmark integral equation for evolution of wavefunction in imaginary time τ in terms of Green's function (diffusion)
- two- and more-body operators linearized by auxiliary fields (Hubbard-Stratonovich transformation)
- trial wavefunction probed stochastically with weight given by the Green's function
- ✓ lowest-energy state with symmetry of trial wavefunction projected onto as $\tau \rightarrow \infty$

$$H^{(0)} = -\frac{1}{2m_N} \sum_{i} \nabla_i^2 + \frac{1}{4} \sum_{i < j} \left[\left(3C_{10}(\Lambda) + C_{01}(\Lambda) \right) + \left(C_{10}(\Lambda) - C_{01}(\Lambda) \right) \vec{\sigma}_i \cdot \vec{\sigma}_j \right] e^{-\Lambda^2 r_{ij}^2/4} + \sum_{i < j < k} \sum_{cyc} D_1(\Lambda) \mathbf{\tau}_i \cdot \mathbf{\tau}_j e^{-\Lambda^2 \left(r_{ij}^2 + r_{jk}^2 \right)/4}$$

TABLE III. The LO LECs [GeV] for lattice nuclei at $m_{\pi} = 805$ MeV, as a function of the momentum cutoff Λ [fm⁻¹].

Λ	$C_{1,0}$	$C_{0,1}$	D_1
2	-0.1480	-0.1382	-0.07515
4	-0.4046	-0.3885	-0.3902
6	-0.7892	-0.7668	-1.147
8	-1.302	-1.273	-2.648

no excited states for A = 2,3,4

 no ³n dro 	plet
--	------

		805	805	510	140	m_{π}
		[This work]	[6]	[5]	[Nature]	Nucleus
	-	1634.0 *	1634.0	1320.0	939.6	n
		1634.0	1634.0	1320.0	938.3	р
	-	15.9 \pm 3.8 *	15.9 ± 3.8	7.4 ± 1.4	-	nn
		19.5 \pm 4.8 *	19.5 ± 4.8	11.5 ± 1.3	2.224	D
		-			-	³ n
	:	53.9 \pm 10.7 *	53.9 ± 10.7	20.3 ± 4.5	8.482	$^{3}\mathrm{H}$
		53.9 ± 10.7	53.9 ± 10.7	20.3 ± 4.5	7.718	$^{3}\mathrm{He}$
predictions	٦	89 ± 36	107.0 ± 24.2	43.0 ± 14.4	28.30	$^{4}\mathrm{He}$
	Γ	98 ± 39	(()10		27.50	$^{5}\mathrm{He}$
		98 ± 39	етаї, 12 al '12	[5] Yamazaki [6] Beane <i>et i</i>	26.61	⁵ Li
	J	122 ± 50	barnea <i>et al.</i> '13	[This work] B	32.00	⁶ Li

27

What next?

- > NLO, larger cutoff at m_{π} = 805 MeV
- > LO at m_{π} = 510 MeV
- larger A with AFDMC
- > hypernuclei

...

> chiral EFT at lower pion masses when available

Conclusion

- EFT is constrained *only* by symmetries and thus can be matched onto lattice QCD
- EFT allows controlled extrapolations of lattice results in nucleon number (and pion mass)
- First, proof-of-principle calculation carried out at $m_{\pi} \approx 800$ MeV with pionless EFT
- World at large pion mass *might* be just a denser version of ours