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Nuclear matter energy per particle and saturation density correlation



(MeV)

ENERGY PER PARTICLE

Nuclear force: SHCP

Remark: The binding energy
per particle is calculated

in the Bruckner approximation
with self consistent single
particle energies below the
Fermi level.

Ref. [F. Coester, S. Cohen,
B. Day, and C.M. Vincent,
Phys. Rev. C 1, 3 (1970)].
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ENERGY PER PARTICLE (MeV)

FERMI MOMENTUM k. (F))

Nuclear force: Yukava-Core Potential

Remark: The binding energy
per particle is calculated

in the Bruckner approximation
with self consistent single
particle energies below the
Fermi level.

Ref. [F. Coester, S. Cohen,
B. Day, and C.M. Vincent,
Phys. Rev. C 1, 3 (1970)].

Where p = 35k3..
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Few-Body Scales

(AV18 + 3BF ):
Ref. [R.B. Wiringa and S.C. Pieper, PRL 89, 182501 (2002)]

Remark:

There is a systematic improvement of the Binding Energy results for He, Li, Be, and B
isotopes simultaneously with the B, when models are tuned to fit B,.



Few-Body Scales

In the limit of a zero-range interaction, we write the binding energy of a nucleus with
mass number A and isospin projection 7,, considering isospin breaking effects, as

B(A,IZ) :ABtB(BV5ﬂd7ﬁ(Z7A9 IZ)7 (1)

where 8, = B,/B; whita = v, d and a.

According to the Tjon line, 8, remains approximately constant for a variety of
two-nucleon potentials and the parametrization of the numerical results, given in MeV,
for several two-nucleon potentials is

B, = 4.72(B, — 2.48) 2)
which for BV = 8.48 MeV gives B;,” = 28.32 MeV.

Using (2) in (1), we obtain



Few-Body Scales

R(A,I,) = Ba1,)/A = BR(B, A, ), (3)

where in the scaling function R(A, I,) the values of B; and B, are fixed to the
experimental values.

We suppose that going to the infinite isospin symmetrical nuclear matter, A — o and
I, = 0, the limit

By . B .
— = lim B(B,. B4, fa- AL = 0) = BiG(By. fa.B). (4)

is well defined and expresses the correlation between the binding energy of the
nucleon in nuclear matter with the few-nucleon scales. The Fermi energy

EF = Bt SF(BWBdaﬁ(Y)’ (5)

will be correlated as well to the few-nucleon binding energies.
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Figure: Infinite nuclear matter binding energy as a function of Er extracted from Ref. [R.
Machleidt, Adv. Nucl. Phys. 19 (1989) 189] (solid circles and squares). The squares includes
the single particle contribution in the continuum. The full triangle is given by the empirical
values.
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Figure: B, /A as a function of Bt extracted from Ref. [R. Machleidt, Adv. Nucl. Phys. 19 (1989)
189] (solid circles and squares). The squares includes the single particle contribution in the
continuum. The full triangle is given by the empirical values.
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Figure: Er as a function of Bt extracted from Ref. [R. Machleidt, Adv. Nucl. Phys. 19 (1989)
189] (solid circles and squares). The squares includes the single particle contribution in the
continuum. The full triangle is given by the empirical values.
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Figure: Infinite nuclear matter binding energy as a function of EF , both in units of the triton
binding energy. The calculation results are extracted from Ref. [R. Machleidt, Adv. Nucl. Phys.
19 (1989) 189] (solid circles and squares). The squares includes the single particle contribution
in the continuum. The full triangle represents the empirical values.
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Non-relativistic limit for NLPC models

Lagrangian density

_ 1 _ 1 _ A _ B _ 1 _
Lyrc = w(iy”ay—M)w—503(¢7“¢)2+§G§(¢¢)2+§(W)3+Z(W)4—§G$V(W“ﬁ#)2, (6)

We perform the nonrelativistic limit of the NLPC models by rewriting the small
component (y) of the fermion field ¢ in terms of the large one (¢) in the Dirac equation

(c-kBo-k+M+S+V)p = E¢ (7)

where B have been expanded from the parameter
x=(e-S-V)By = (E-M—-S8-V)By. Thus,
B 1
"T+(e-S-V)B,
1

BO = m (8)

B

=~ By +By(S+V -e),



Non-relativistic limit for NLPC models
Approaches
Reduces to the Schrédinger equation:

I’_‘Iclass(pclass — E(pclass, where (pclass — 21/2(1)’

A =112 [0 kBoo -k+ S+V + o -kBy(S+V)o k|17,

2
I=1+0-kBjo-k=1+Z=1+xx+1).

These expansions lead to the vector and scalar densities

class |2
b

p = do+xx=lp
ps = ¢'o-x'x=p(l-2/2),
and to the single-particle energy H¢“**, that now reads

2

k
H = ——— 4+ 5+V
2M +S)

(12)

(13)



Non-relativistic limit for NLPC models
Approaches

2
Hclass _ k

= —— +(G> - G*p - Ap® — Bp® + 2B2k*0(G> + 2Ap + 3Bp?). 14
TS (Gy - Gy)p—Ap 0 ok p(Gy 0 0°) (14)

With this procedure and using the continuous limit in H“*, we have

2 3 4 3n 23 8/3 3 (3n° - 5/3
Enr = — | — + —|— R here (15
NR = C1p° + Cop” + C3p +C4(P)40( > ) P IOM( > ) o w (15)

4
c1=Gy -G c=-A, c3=-B, and cip) = W(Gf +2Ap +3Bp?).  (16)

The nucleon effective mass will now be defined by its standard nonrelativistic as follows

class 11 -1
OH _wmlis Mcy(p)p ’
ok 4

where again we have used M + S = M in Eq. (14).

M =k

(17)
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Correlations

Expansions
e The energy per particle (E = /p) expanded as a function of the nuclear density p

1 1
E(x) = Eo + EKme + ngx3 + 0™, (18)

x = (p—po)/(3p,) — expansion parameter; E,, — binding energy at the saturation
density p,; Ko — incompressibility at p = p,; O« — third derivative (skewness) of
the energy per particle at p = p,.

e The symmetry energy (S) expanded as a function of the nuclear density p
1 1
S(p) =J + Lx + EKsyme + 6stmx3 + 00 (19)
x = (0o —po)/(3p,) — expansion parameter; J — symmetry energy at the
saturation density p,; L — symmetry energy slope at p = p,; Kym — Symmetry

energy curvature at p = p,; Osm — third derivative (skewness) of symmetry
energy S at p = p,.



Correlations

Analytical expressions for the equations of state

These quantities are defined by

oP & (g/p)
=9— =27p3 : 20
op ’p =p0,y= 1/2 Qs 0> lp=poy=1/2 (20)
1 [ 92N oS
S(P) =3 [M] > J= S(p()); L= 3100(3 ) > (21)
8 (9_)7 y:% P P=Po
2 3
Ky = 992 (‘; S) L Q=279 (Z—f) . (22)
p P=Po 0



Correlations

Analytical expressions for the equations of state

The energy density functional at zero temperature for asymmetric nuclear matter is
written as

3 5
&(p.y) = (Gy - GDp* - Ap®* - Bp* + GR,p*2y — 1)* + e (23)

where the effective mass is
M2
(M + G2p + 2Ap* + 3Bp3)H% ’

M (p,y) = (24)

with H% = 2%[y% +(1 —y)%], A= (37r2/2)%, and y = p,/p being the proton fraction of the
system. The proton density is p,.
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Analytical expressions for the equations of state

The pressure is defined by P(p, y) = pza(g—//)’”,

AH 5 33
P(p.) = (Gi-Ghp? 24 3Bp*+ G o2 Qy-1)+ 28 ( + 3Gl + 840" + 33p3)p3
(25)
The chemical potential is defined by y = de/dp,

2
3

2 2 2, AHsy3 (5 )
u(p,y) = 2(Gy—Gg)p— 3Ap 4Bp +2GTVp(2y )+ i1z 2M +4Ggp + llAp +213p o,
(26)
Thermodynamic consistency: u(p,y) = [e(o,y) + P(p, y)]/p
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Analytical expressions for the equations of state

The incompressibility is defined by K(p,y) = 92—2’, is given by

K(p,y) =18(G; - G3)p — 5440
~108Bp’ + 18G2,p(2y — 1)

3AH 88 231,
Bp’|p

+— (M +4G%p + —Ap* + =—
A

3 (27)

with Hs =233 + (1= )31, 4= 372/2)3,y = pylp

We rewrite the coupling constants of the model, namely, Gg, G\%, A, and B, in terms of
the bulk parameters m*, p,, B,, and K,,. This is done by solving a system of four
equations, namely, £(p,, 1/2) = —B,, K(p,, 1/2) = K,, P(0,, 1/2) = 0 ( nuclear
saturation), and M*(p,, 1/2) =



Correlations

Correlations between the nuclear matter symmetry energy and its slope

and J = S(p,) is given by

(MNP /p)
dy?

The symmetry energy is defined by S(p) = & [

i1

2 5
Ap;

oM

+ (Gg + 24p, + 3Bp§) Ao,

J=
6M

2 Po- (28)

The symmetry energy S(p) is used again in order to obtain L = 3p, [%[()p)]p:p and the

result is ;

Ap,
p ¢ P +3GLp (29)

o +(5G3 + 164p, + 333,%) A0

oM

L=
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Correlations between the nuclear matter symmetry energy and its slope

We write L = L(m*, p,, B,, K,,) and subtracting 3/ from L, we obtain
L =3J+f(m",p,,B,,K,), where (30)

SEY
~ (3M2  19E2M + 18E)

f(m*’po,Bo, K,)
2M

X{;(?)M— 14E€)—M(M+K0/9)+E;(5M+6Bo)} (31)
m*

2
exhibits a dependence with the inverse of the effective mass, with EZ = 310, /10M.
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Correlations between the nuclear matter symmetry energy and its slope

o Usually, in nuclear mean-field models, the binding energy and the saturation
density are well established close around the values of B, = 16 MeV and
po =0.15 fm=3.

e The same assumption does not apply to the incompressibility and effective mass.

e Thus, we analyze how the function varies with the incompressibility for a fixed
value of the effective mass.

¢ And we analyze how the function varies with the effective mass for a fixed value of
the incompressibility.
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Correlations between the nuclear matter symmetry energy and its slope
e For a fixed value of m*, the variation in f will be given by

SME?
- F AK,.
9(3M? — 19E2M + 18E%?)

Ak, =
For the range of 250 < K, < 315 MeV, we verify that |(Af)k,| = 0.32 MeV.

e For two different models with same incompressibility K, but with two different
effective masses m} and m3, the f variation (with Am* = m} —m]) can be inferred

by
SMES(3M — 14E2)  Am?

9(3M? — 19E2M + 18E2%) mim}’
For the range of 0.50 < m* < 0.80, we verify that |(Af),-| = 18 MeV.

(33)

(Af)m* =
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Figure: Effect of Af in the L — J correlation of Eq. (30) for (a) 0.50 < m* < 0.80, and (b)
250 < K, < 315 MeV. Ref. [B. M. Santos, M. Dutra, O. Lourengo, and A. Delfino, Phys. Rev. C
90, 035203 (2014)].
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Figure: L versus J for FR parametrizations in which m* is the same. Ref. [B. M. Santos, M.
Dutra, O. Lourengo, and A. Delfino, Phys. Rev. C 90, 035203 (2014)].



HOF — 1=3.097+4.91 (for m* = 0.58)
[ -- L=3.07J-0.86 (for m* =0.64)

100f
[ FRS Constraint:

Spin-Orbit Splitting
Ref. [R.J. Furnstahl,
] J.J. Rusnak and

7] B.D. Serot,

Nucl. Phys. A632,
] 607 (1998)].

90

L (MeV)

s0f

[ o« FR-RMF models in which
70F 0.58 <m*<0.64

056 27 25 20 30 3 32 B 34 35
T (MeV)
Figure: Graphic constraint in the L versus J plane, Ref. [B. M. Santos, M. Dutra, O.

Lourencgo, and A. Delfino, Phys. Rev. C 90, 035203 (2014)].
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Correlations between the nuclear matter symmetry energy slope and its curvature

The symmetry energy curvature, defined as K., = 902 (‘9 3) , is given by
P=Po

1
Koym = (—* - l)s(po) +1(po, Bo, K,), Where (34)
m
. 5100 [ 4E? E° (M - 10E?) (19M — 18E?) ] (@5)
s(po) = e )
M (M —2E2)  5(M -2E?)(3M2 - 19E2M + 18E2)

2
103 K, (19M — 18E° 81B,M + 8E°M + 18E°2
r(po,Bo’Ko) = _&[1 + ( 0( F) - ( 2 F F )] (36)

SML 2(3M2 - 19E2M + 18EZ?)  3M? — 19E2M + 18E
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Correlations between the nuclear matter symmetry energy slope and its curvature
By rearranging these equations, we find a simplified form for K., namely,
Ksym = [L - 3‘]] p(p()) + Q(po, B()9 K())> Where (37)

5(00)
plpo) = 222 38
) g(po) (38)

Q(Po,Bo, K,) = _h(po, B,, Ko)p(po) + ”(Po, B,,K,)
_ps { P =21, MEZIp(p,) +8]

Sl 2 (3M2 - 19E2M + 18E2?)
9EPp(p,) =21 + 2TB,[E¢plp,) =3M] _ Mp(po) ~ 191 + 18E¢ }
(3M2 - 19E2M + 18EP?) 2(3M2 — 19E2M + 18E2) )

(39)
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Figure: Correlation between Ky, and L plane, Ref. [B. M. Santos, M. Dutra, O. Lourengo, and
A. Delfino, Phys. Rev. C 90, 035203 (2014)].
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Figure: Graphic constraint in the Ky, versus L plane, Ref. [B. M. Santos, M. Dutra, O.
Lourenco, and A. Delfino, Phys. Rev. C 90, 035203 (2014)].
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Is there correlation between Q. and K.,? Yes.

PHYSICAL REVIEW C 88, 034319 (2013)

Determination of the density dependence of the nuclear incompressibility

E. Khan' and J. Margueron'-?
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Institut de Physique Nucléaire de Lyon, Université de Lyon 1, IN2P3-CNRS, F-69622 Villeurbanne, France
(Received 17 April 2013; revised manuscript received 9 September 2013; published 25 September 2013)
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Correlation between Q. and K,

The incompressibility at the saturation density p,,, defined as K., = 96P| is given by

31 88 231 2
Ko = 18(G2 — G2)p, — 54Ap? — 108Bp] + e (M +4Gp, + ?Apg + = Bpo) 3. (40)

The skewness parameter at the saturation density p,, defined as Q. = 27p;, ap ,is

given by

32 231
Qw = —162(G\2,—Gg)p0+324Ap(2)+324Bp(3)—W (IOM +28G2p, + 3%Ap(, 2 Bp )
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Correlation between Q. and K,

We rewrite the coupling constants of the model, namely, G2, G2, A, and B, in terms of
the bulk parameters m*, p,, B,, and K,. After we write O, = Qo (m*, po, By, K,). By
doing so, and subtracting 9K, from Q.,, we obtain

202 49 2 688ES.  TT4E?
Qoo = Koo = == (L =3J0) + Koy + == Oy = 5 | 243, - 9mf + TF) (42)
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Figure: Incompressibility (K.,) versus the skewness parameter (Q.,) at the saturation density.
Fixed the parameters p, = 0.15fm™ and By = 16 MeV. The ranger 0.56 < m* < 1.00 have been
used for ratio m* = M;/M.
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Figure: Comparison between the limits of L obtained in this work and others authors; See
reference [J. Dong, W. Zuo, J. Gu, and U. Lombardo, Phys. Rev. C 85, 034308 (2012).]



Conclusions

e A more systematic study regarding (B,, p,) X B, is underway:

—HAT —HRT

V) = Val— + i

(MT5) (43)

Vary Vy, Vg, ua and ug. So that B, = 2.2 MeV.

Calculate B;, By and p,. Look for the correlations.

e Use the NR procedure to find other bulk nuclear matter parameters, looking for
new correlations

o Extend the NR procedure to study asymmetric nuclear matter.
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