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Nuclear matter energy per particle and saturation density correlation



Nuclear force: SHCP

Remark: The binding energy
per particle is calculated
in the Bruckner approximation
with self consistent single
particle energies below the
Fermi level.

Ref. [F. Coester, S. Cohen,
B. Day, and C.M. Vincent,
Phys. Rev. C 1, 3 (l970)].

Where ρ = 2
3π2 k3

F.



Nuclear force: Yukava-Core Potential

Remark: The binding energy
per particle is calculated
in the Bruckner approximation
with self consistent single
particle energies below the
Fermi level.

Ref. [F. Coester, S. Cohen,
B. Day, and C.M. Vincent,
Phys. Rev. C 1, 3 (l970)].

Where ρ = 2
3π2 k3

F.



Few-Body Scales



Few-Body Scales



Few-Body Scales

( AV18 + 3BF ):

Ref. [R.B. Wiringa and S.C. Pieper, PRL 89, 182501 (2002)]

Remark:

There is a systematic improvement of the Binding Energy results for He, Li, Be, and B
isotopes simultaneously with the Bt when models are tuned to fit Bt.



Few-Body Scales

In the limit of a zero-range interaction, we write the binding energy of a nucleus with
mass number A and isospin projection Iz, considering isospin breaking effects, as

B(A,Iz) = ABtB(βv, βd, βα,A, Iz), (1)

where βα = Ba/Bt whit a = v, d and α.

According to the Tjon line, βα remains approximately constant for a variety of
two-nucleon potentials and the parametrization of the numerical results, given in MeV,
for several two-nucleon potentials is

Bα = 4.72(Bt − 2.48) (2)

which for Bexp
t = 8.48 MeV gives Bexp

α = 28.32 MeV.

Using (2) in (1), we obtain



Few-Body Scales

R(A, Iz) = B(A,Iz)/A = BtR(Bt,A, Iz), (3)

where in the scaling function R(A, Iz) the values of Bd and Bv are fixed to the
experimental values.

We suppose that going to the infinite isospin symmetrical nuclear matter, A→ ∞ and
Iz = 0, the limit

BA

A
�

Bt

A
lim

A→∞
B(βv, βd, βα,A, Iz = 0) = Bt G(βv, βd, βα), (4)

is well defined and expresses the correlation between the binding energy of the
nucleon in nuclear matter with the few-nucleon scales. The Fermi energy

EF = Bt EF(βv, βd, βα), (5)

will be correlated as well to the few-nucleon binding energies.



Figure: Infinite nuclear matter binding energy as a function of EF extracted from Ref. [R.
Machleidt, Adv. Nucl. Phys. 19 (1989) 189] (solid circles and squares). The squares includes
the single particle contribution in the continuum. The full triangle is given by the empirical
values.



Figure: BA/A as a function of Bt extracted from Ref. [R. Machleidt, Adv. Nucl. Phys. 19 (1989)
189] (solid circles and squares). The squares includes the single particle contribution in the
continuum. The full triangle is given by the empirical values.



Figure: EF as a function of Bt extracted from Ref. [R. Machleidt, Adv. Nucl. Phys. 19 (1989)
189] (solid circles and squares). The squares includes the single particle contribution in the
continuum. The full triangle is given by the empirical values.



Figure: Infinite nuclear matter binding energy as a function of EF , both in units of the triton
binding energy. The calculation results are extracted from Ref. [R. Machleidt, Adv. Nucl. Phys.
19 (1989) 189] (solid circles and squares). The squares includes the single particle contribution
in the continuum. The full triangle represents the empirical values.



Non-relativistic limit for NLPC models



Non-relativistic limit for NLPC models
Lagrangian density

LNLPC = ψ̄(iγµ∂µ−M)ψ−
1
2

G2
V(ψ̄γµψ)2+

1
2

G2
S(ψ̄ψ)2+

A
3

(ψ̄ψ)3+
B
4

(ψ̄ψ)4−
1
2

G2
TV(ψ̄γµ~τψ)2, (6)

We perform the nonrelativistic limit of the NLPC models by rewriting the small
component (χ) of the fermion field ψ in terms of the large one (φ) in the Dirac equation

(σ · k Bσ · k + M + S + V)φ = Eφ (7)

where B have been expanded from the parameter
x = (ε − S − V)B0 = (E −M − S − V)B0 . Thus,

B = B0
1

1 + (ε − S − V)B0
' B0 + B2

0(S + V − ε),

B0 =
1

2(M + S)
(8)



Non-relativistic limit for NLPC models
Approaches

Reduces to the Schrödinger equation:

Ĥclassϕclass = εϕclass, where ϕclass = Î1/2φ, (9)

Ĥclass = Î−1/2 [σ · k B0 σ · k + S + V + σ · k B2
0(S + V)σ · k

]
Î−1/2, (10)

Î = 1 + σ · k B2
0 σ · k = 1 +

z2

4
= 1 + x(x + 1). (11)

These expansions lead to the vector and scalar densities

ρ = φ†φ + χ†χ = |ϕclass|2,

ρs = φ†φ − χ†χ = ρ(1 − z2/2), (12)

and to the single-particle energy Ĥclass, that now reads

Hclass =
k2

2(M + S)
+ S + V (13)



Non-relativistic limit for NLPC models
Approaches

Hclass =
k2

2(M + S)
+ (G2

V − G2
s )ρ − Aρ2 − Bρ3 + 2B2

0k2ρ(G2
s + 2Aρ + 3Bρ2). (14)

With this procedure and using the continuous limit in Hclass, we have

ENR = c1ρ
2 + c2ρ

3 + c3ρ
4 + c4(ρ)

3
40

(
3π2

2

)2/3

ρ8/3 +
3

10M

(
3π2

2

)2/3

ρ5/3, where (15)

c1 = G2
V − G2

s , c2 = −A, c3 = −B, and c4(ρ) =
4

M2 (G2
s + 2Aρ + 3Bρ2). (16)

The nucleon effective mass will now be defined by its standard nonrelativistic as follows

M∗ = k
[
∂Hclass

∂k

]−1

= M
[
1 +

Mc4(ρ)ρ
4

]−1

, (17)

where again we have used M + S = M in Eq. (14).



Correlations



Correlations
Expansions

• The energy per particle (E = ε/ρ) expanded as a function of the nuclear density ρ

E(x) = E∞ +
1
2

K∞x2 +
1
6

Q∞x3 + O(x4), (18)

x = (ρ − ρo)/(3ρo)→ expansion parameter; E∞ → binding energy at the saturation
density ρo; K∞ → incompressibility at ρ = ρo; Q∞ → third derivative (skewness) of
the energy per particle at ρ = ρo.

• The symmetry energy (S) expanded as a function of the nuclear density ρ

S(ρ) = J + Lx +
1
2

Ksymx2 +
1
6

Qsymx3 + O(x4) (19)

x = (ρ − ρo)/(3ρo)→ expansion parameter; J → symmetry energy at the
saturation density ρo; L→ symmetry energy slope at ρ = ρo; Ksym → symmetry
energy curvature at ρ = ρo; Qsym → third derivative (skewness) of symmetry
energy S at ρ = ρo.



Correlations
Analytical expressions for the equations of state

These quantities are defined by

K∞ = 9
∂P
∂ρ

∣∣∣∣
ρ=ρo,y=1/2

; Q∞ = 27ρ3
o
∂3 (ε/ρ)
∂ρ3

∣∣∣∣
ρ=ρo,y=1/2

; (20)

S(ρ) =
1
8

[
∂2(ε(NR)/ρ)

∂y2

]
y= 1

2

; J = S(ρo); L = 3ρo

(
∂S

∂ρ

)
ρ=ρo

; (21)

Ksym = 9ρ2
o

(
∂2S

∂ρ2

)
ρ=ρo

; Qsym = 27ρ3
o

(
∂3S

∂ρ3

)
ρ=ρo

. (22)



Correlations
Analytical expressions for the equations of state

The energy density functional at zero temperature for asymmetric nuclear matter is
written as

ε(ρ, y) = (G2
V − G2

S)ρ2 − Aρ3 − Bρ4 + G2
TVρ

2(2y − 1)2 +
3

10M∗(ρ, y)
λρ

5
3 , (23)

where the effective mass is

M∗(ρ, y) =
M2

(M + G2
Sρ + 2Aρ2 + 3Bρ3)H 5

3

, (24)

with H 5
3

= 2
2
3 [y

5
3 + (1 − y)

5
3 ], λ = (3π2/2)

2
3 , and y = ρp/ρ being the proton fraction of the

system. The proton density is ρp.



Correlations
Analytical expressions for the equations of state

The pressure is defined by P(ρ, y) = ρ2 ∂(ε/ρ)
∂ρ ,

P(ρ, y) = (G2
V−G2

S)ρ2−2Aρ3−3Bρ4+G2
TVρ

2(2y−1)2+
λH5/3

5M2

(
M +

5
2

G2
Sρ + 8Aρ2 +

33
2

Bρ3
)
ρ

5
3

(25)

The chemical potential is defined by µ = ∂ε/∂ρ,

µ(ρ, y) = 2(G2
V−G2

S)ρ−3Aρ2−4Bρ3+2G2
TVρ(2y−1)2+

λH5/3

5M2

(
5
2

M + 4G2
Sρ + 11Aρ2 + 21Bρ3

)
ρ

2
3

(26)

Thermodynamic consistency: µ(ρ, y) = [ε(ρ, y) + P(ρ, y)]/ρ



Correlations
Analytical expressions for the equations of state

The incompressibility is defined by K(ρ, y) = 9∂P
∂ρ , is given by

K(ρ, y) = 18(G2
V − G2

S)ρ − 54Aρ2

−108Bρ3 + 18G2
TVρ(2y − 1)2

+
3λH 5

3

M2

(
M + 4G2

Sρ +
88
5

Aρ2 +
231
5

Bρ3
)
ρ

2
3 , (27)

with H 5
3

= 2
2
3 [y

5
3 + (1 − y)

5
3 ], λ = (3π2/2)

2
3 , y = ρp/ρ

We rewrite the coupling constants of the model, namely, G2
S, G2

V, A, and B, in terms of
the bulk parameters m∗, ρo, Bo, and Ko. This is done by solving a system of four
equations, namely, ε(ρo, 1/2) = −Bo, K(ρo, 1/2) = Ko, P(ρo, 1/2) = 0 ( nuclear
saturation), and M∗(ρo, 1/2) = M∗o.



Correlations
Correlations between the nuclear matter symmetry energy and its slope

The symmetry energy is defined by S(ρ) = 1
8

[
∂2(ε(NR)/ρ)

∂y2

]
y= 1

2

and J = S(ρo) is given by

J =
λρ

2
3
o

6M
+

(
G2

S + 2Aρo + 3Bρ2
o

) λρ 5
3
o

6M2 + G2
TVρo. (28)

The symmetry energy S(ρ) is used again in order to obtain L = 3ρo
[
∂S(ρ)
∂ρ

]
ρ=ρo

and the
result is

L =
λρ

2
3
o

3M
+

(
5G2

S + 16Aρo + 33Bρ2
o

) λρ 5
3
o

6M2 + 3G2
TVρo. (29)



Correlations
Correlations between the nuclear matter symmetry energy and its slope

We write L = L(m∗, ρo,Bo,Ko) and subtracting 3J from L, we obtain

L = 3J + f (m∗, ρo,Bo,Ko), where (30)

f (m∗, ρo,Bo,Ko) =
5Eo

F(
3M2 − 19Eo

F M + 18Eo2
F

)
×

{
2M
9m∗

(3M − 14Eo
F ) −M (M + Ko/9) + Eo

F(5M + 6Bo)
}

(31)

exhibits a dependence with the inverse of the effective mass, with Eo
F = 3λρ

2
3
o /10M.



Correlations
Correlations between the nuclear matter symmetry energy and its slope

• Usually, in nuclear mean-field models, the binding energy and the saturation
density are well established close around the values of Bo = 16 MeV and
ρo = 0.15 fm−3.

• The same assumption does not apply to the incompressibility and effective mass.

• Thus, we analyze how the function varies with the incompressibility for a fixed
value of the effective mass.

• And we analyze how the function varies with the effective mass for a fixed value of
the incompressibility.



Correlations
Correlations between the nuclear matter symmetry energy and its slope

• For a fixed value of m∗, the variation in f will be given by

(∆f )Ko = −
5MEo

F

9(3M2 − 19Eo
F M + 18Eo2

F )
∆Ko. (32)

For the range of 250 ≤ Ko ≤ 315 MeV, we verify that |(∆f )Ko | = 0.32 MeV.

• For two different models with same incompressibility Ko but with two different
effective masses m∗1 and m∗2, the f variation (with ∆m∗ = m∗2 − m∗1) can be inferred
by

(∆f )m∗ =
5MEo

F(3M − 14Eo
F )

9(3M2 − 19Eo
F M + 18Eo2

F )
∆m∗

m∗1m∗2
, (33)

For the range of 0.50 ≤ m∗ ≤ 0.80, we verify that |(∆f )m∗ | = 18 MeV.



Figure: Effect of ∆f in the L − J correlation of Eq. (30) for (a) 0.50 ≤ m∗ ≤ 0.80, and (b)
250 ≤ Ko ≤ 315 MeV. Ref. [B. M. Santos, M. Dutra, O. Lourenço, and A. Delfino, Phys. Rev. C
90, 035203 (2014)].



Figure: L versus J for FR parametrizations in which m∗ is the same. Ref. [B. M. Santos, M.
Dutra, O. Lourenço, and A. Delfino, Phys. Rev. C 90, 035203 (2014)].



FRS Constraint:
Spin-Orbit Splitting
Ref. [R.J. Furnstahl,
J.J. Rusnak and
B.D. Serot,
Nucl. Phys. A632,
607 (1998)].

Figure: Graphic constraint in the L versus J plane, Ref. [B. M. Santos, M. Dutra, O.
Lourenço, and A. Delfino, Phys. Rev. C 90, 035203 (2014)].



Correlations
Correlations between the nuclear matter symmetry energy slope and its curvature

The symmetry energy curvature, defined as Ksym = 9ρ2
o

(
∂2S
∂ρ2

)
ρ=ρo

, is given by

Ksym =

(
1

m∗
− 1

)
s(ρo) + r(ρo,Bo,Ko), where (34)

s(ρo) =
5λρ

2
3
o

3M

[
1 +

4Eo
F(

M − 2Eo
F

) − Eo
F

(
M − 10Eo

F

) (
19M − 18Eo

F

)
5
(
M − 2Eo

F

) (
3M2 − 19Eo

F M + 18Eo2
F

) ], (35)

r(ρo,Bo,Ko) = −
λρ

2
3
o

3M

[
1 +

Ko
(
19M − 18Eo

F

)
2
(
3M2 − 19Eo

F M + 18Eo2
F

) − (81BoM + 8Eo
F M + 18Eo2

F )
3M2 − 19Eo

F M + 18Eo2
F

]
. (36)



Correlations
Correlations between the nuclear matter symmetry energy slope and its curvature

By rearranging these equations, we find a simplified form for Ksym, namely,

Ksym = [L − 3J] p(ρo) + q(ρo,Bo,Ko), where (37)

p(ρo) =
s(ρo)
g(ρo)

, (38)

q(ρo,Bo,Ko) = −h(ρo,Bo,Ko)p(ρo) + r(ρo,Bo,Ko)

=
λρ

2
3
o

3M

{
[p(ρo) − 2]

2
+

MEo
F [p(ρo) + 8](

3M2 − 19Eo
F M + 18Eo2

F

)
−

9Eo2
F [p(ρo) − 2] + 27Bo[Eo

F p(ρo) − 3M](
3M2 − 19Eo

F M + 18Eo2
F

) +
M

[
p(ρo) − 19

]
+ 18Eo

F

2
(
3M2 − 19Eo

F M + 18Eo2
F

)Ko

}
.

(39)



Figure: Correlation between Ksym and L plane, Ref. [B. M. Santos, M. Dutra, O. Lourenço, and
A. Delfino, Phys. Rev. C 90, 035203 (2014)].



Figure: Graphic constraint in the Ksym versus L plane, Ref. [B. M. Santos, M. Dutra, O.
Lourenço, and A. Delfino, Phys. Rev. C 90, 035203 (2014)].



Correlations
Is there correlation between Q∞ and K∞? Yes.



Correlations
Correlation between Q∞ and K∞

The incompressibility at the saturation density ρo, defined as K∞ = 9∂P
∂ρ

∣∣∣∣
ρo

, is given by

K∞ = 18(G2
V −G2

S)ρo − 54Aρ2
o − 108Bρ3

o +
3λ
M2

(
M + 4G2

Sρo +
88
5

Aρ2
o +

231
5

Bρ3
o

)
ρ

2
3
o . (40)

The skewness parameter at the saturation density ρo, defined as Q∞ = 27ρ3
o
∂3(ε/ρ)
∂ρ3

∣∣∣∣
ρo

, is

given by

Q∞ = −162(G2
V−G2

S)ρo +324Aρ2
o +324Bρ3

o−
3λ
M2

(
10M + 28G2

Sρo +
352
5

Aρ2
o +

231
5

Bρ3
o

)
ρ

2
3
o .

(41)



Correlations
Correlation between Q∞ and K∞

We rewrite the coupling constants of the model, namely, G2
S, G2

V, A, and B, in terms of
the bulk parameters m∗, ρo, Bo, and Ko. After we write Q∞ = Q∞(m∗, ρo,Bo,Ko). By
doing so, and subtracting 9K∞ from Q∞, we obtain

Q∞ = 9K∞ −
202

5
(L − 3Jo) + Ksym +

49
75

Qsym −
2
3

(
243Eo −

688Eo
F

9m∗
+

774Eo
F

5

)
(42)



Figure: Incompressibility (K∞) versus the skewness parameter (Q∞) at the saturation density.
Fixed the parameters ρ0 = 0.15 fm−3 and B0 = 16 MeV. The ranger 0.56 < m∗ < 1.00 have been
used for ratio m∗ = M∗o/M.



Conclusions



Figure: Comparison between the limits of L obtained in this work and others authors; See
reference [J. Dong, W. Zuo, J. Gu, and U. Lombardo, Phys. Rev. C 85, 034308 (2012).]



Conclusions

• A more systematic study regarding (Bn, ρo) × Bt is underway:

V(r) = VA
e−µAr

r
+ VR

e−µRr

r
(MT5) (43)

Vary VA, VR, µA and µR. So that B2 = 2.2 MeV.

Calculate Bt, BN and ρo. Look for the correlations.

• Use the NR procedure to find other bulk nuclear matter parameters, looking for
new correlations

• Extend the NR procedure to study asymmetric nuclear matter.



Thank you!
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