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Natural and artificial N particle quantum systems

e Natural
few-electron atoms and ions
few-electron molecules parameters fixed by God
few-nucleon nuclei

o Artificial
few ions in traps
ultracold few-atom systems

few-electron quantum dots (QDs) parameters fixed by experimentalists

The systems are modelled by the Schrédinger N-body equation

—Z{ V2+Vr,] ZU\r,—r,|
/1/;&/ U(
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Two-electron anisotropic quantum dot model
3D — quasi 1D
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3D two-electron QD

Model Hamiltonian

2

- R2v2 K
H—Z o -+ U(X, i, 2i) +m,

- the effective electron mass
K= —*, where ¢* - the effective dlelectrlc constant
e.g. for GaAs QD: m* = 0.067me, e* = 11
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3D two-electron QD

Model Hamiltonian
2
~ h2V2 K
H—; o -+ U(X, i, 2i) +m,

- the effective electron mass
K= —*, where ¢* - the effective dielectric constant
e.g. for GaAs QD: m* = 0. 067me, e* = 11
.

Anisotropic QD

2 2v2
h Vs K
(Xl7yl)+ U||(ZI) ’
Iri —r2

Lateral confinement: U, (x,y) = %“’Z(X2 +y?)
Longitudinal potential: U (z;)

—_— s
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Quasi-1D QD

Strongly anisotropic QD

Lateral confinement much stronger than the longitudinal one.
Single mode approximation: W(rqy,r2) = (21, 22)d(x1)d(y1)P(X2)d(¥2), where

* * wx?
6(x) = (B2)3e™ "2
Longitudinal motion
2
HH Z, 1 |: S 822 aF U” (Z,)] + Veff(z) + 2hw

)
G

Effective electron-electron interaction

Ve (2) = Pxd? I¢(X1)¢(Xa) (1)) 2

on(2) =r [ y\/X1 —x2)2+(y1 —y2)?+22

approximated by truncated Coulomb potential
V@)= ez

I - the lateral radius
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Quasi-1D QD

Attractive Gaussian potential

Longitudinal confinement
_ 2 “sof
— 2
UH(X)* —Voe # | p=10m B =200nm
3 - the range of the longitudinal confinement
V, - the depth of the potential well -1s0f Vo = 200 eV’
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Quasi-1D QD

Attractive Gaussian potential

Longitudinal confinement
_ 2 “sof
— 2
UH(X)* —Voe 7 | p=10m B =200nm
3 - the range of the longitudinal confinement
V, - the depth of the potential well -1s0f Vo = 200 eV’

v

Dimensionless Hamiltonian

. K2 h2
After rescaling x — Bx, Vo — -7 Vo, E — Az E

)

+
(x1 —x2)2 +4

g - ratio of the interaction to the confinement strength
V6 = lateral radius

v
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Autoionisation

Two-particle spectrum

The spectrum is -6 / g * 1 autoionizing
continuous above the i Bt ] resonances
@ _ @
threshold energy ;s = € o V T
where
1 2)
" is the lowest v pf @y,
one-particle energy. b @
v Vo =10
=i §=0.01
-18 4 L L L
0 il 2 3 4 5
9
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Resonances
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Mathematical description of resonances

Resonances are localized metastable states with finite lifetime.

Experimental manifestation of &
resonance phenomena: st
peaks in the collision cross sections  *| — caaaion
well described by two-parameter & “F L —  rero g
formulas (Breit-Wigner, Fano,...). o o

20F orenz Fitting

10F €

8,85 0,‘90 0,§5 1,60 1,65 71,10
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G.Gamow (1928): The peak position ¢ and the width ' may be related
to the complex eigenvalues E = ¢ — il /2 of the Schrdédinger equation

Hy = Ey
Probability density: [1(x, t)[2 = e~ f|s(x)|2, U(
thus I = 2, where 7 is the resonance lifetime. Oniery
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Determination of of resonant states

Asymptotics of resonance wave functions

Iimxﬁoo I[Jres(x) X eik’esx, where kres = |kreg‘e_ia’es with 0 < Qres < %
wres(x — OO) o< e/\kres| cos Otresxe“(res\ sin arezX — 00

Resonant wave function vrez(x) diverges exponentially, so doesn’t belong to the Hilbert space.
The Hamiltonian is thus not hermitian.
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Determination of of resonant states

Asymptotics of resonance wave functions

Iimxﬁoo ’l/)res(x) X eik’esx, where kres = |kres‘eiia’es with 0 < ares < %
’Abres(x — OO) o< e/\kres| cos OtresXe|kres\ sin ovrez X — 00

Resonant wave function vrez(x) diverges exponentially, so doesn’t belong to the Hilbert space.
The Hamiltonian is thus not hermitian.

Methods:
Hermitian QM
@ Wavepacket propagation with outgoing boundary conditions
@ Complex poles of the scattering matrix
@ Real stabilization method
@ Rigged Hilbert space (Berggren representation)
o ..
Non-Hermitian QM
@ Complex scaling

@ Complex absorbing potential
o ..
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Complex scaling
Complex rotation: J = e=9%/h % — UxU~1 = /%%
N Aan N K2 . .
A— UORU" = Hy = ——e729v2 4 V(ex)
2m
Asymptotics of rescaled wave function
Phos(X = 00) — gllkres| COS(0—arres)X g=kres| Sin(0—ares)X _, 0 if 0 < § — avrer < /2.

Theorem E. Balslev, J.M. Combes, Commun. Math. Phys. 22 (1971) 280
The spectrum of the complex-rotated non-hermitian Hamiltonian Foyf = Ey®

fme @ Bound-state eigenvalues, the complex

— N resonance eigenvalues and the
thresholds are the same as those of the
original Hamiltonian

continwum -

@ The continuous spectra are rotated
about the thresholds by an angle 260 into
the lower energy half-plane

Advantage: resonances can be determined as the eigenstates of Hy with complex ener J (
E=ReE —ilmE =¢— ig by using bound-state-like strategies.

Un \vern;wtij

Probability density [¢:(r, )2 = e~ % {|4(r)|2 decays with a lifetime 7, where I = L)
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Cl method for bound states

\U(X1 7X2) =

To determine the spectrum of our system, we apply the configuration interaction (CI) expansion
where the basis functions are given by

=" ajj(x, Xe)

i.j

1

By x2) = G (6106)65002) = (1 )i(x2)) . where =4 vB 7]

1 i=j ?
2
which ensures the proper symmetry under permutations of the particles, so that (+) and (—)
correspond to the singlet and triplet states, respectively.

The single particle basis is taken as composed of harmonic oscillator eigenfunctions

1/2 )
oR(x) = ( gg,!) Hi(Vax)e™ %

2
with an arbitrary frequency Q. We determine the eigenstates of the system through

diagonalization of the truncated Hamiltonian matrix [H] sy, the elements of which are given by

nml] / "vz)nm(x1 ) X2)Hw,/ (X1, x2)dxq dxa.

In determining bound-states, the nonlinear parameter Q is considered as a real and positive

number. Its value is fixed so as to minimize the considered energy eigenvalue LJ (

dEx
Properties of the Gaussian quantum dot

=0.
A. Kuros, A. Okopinska
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Cl method for resonant states

The Cl method can be generalised to the case of resonant states, by allowing the nonlinear
parameter to be a complex number Q = ae—2/?.
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Cl method for resonant states

The Cl method can be generalised to the case of resonant states, by allowing the nonlinear
parameter to be a complex number Q = ae—2/?.

Justification by the complex basis approach

N. Moiseyev, Mol. Phys., 47, (1982) 585
The nonlinear parameter Q2 in HO eigenfunctions is the scale parameter:

9] (x) = %‘bf (%) , where ¢;(x) = (7\/7:2“.!)1/2 Hi(x)efé.

The matrix elements of the complex scaled (x — ne®x) Hamiltonian

R R e—2i0 52
= @ilF1g) = [ 610 [—Zm —ont V(ne'gx)} ¢j(x)ak,

can be equivalently obtained in the complex basis approach

HE2 = (61 Fllof) = [82()] ~ B 25 + V(x) ¢ (x)x f@(x)[fﬁngxe v (Z5)eixex

—2i6 .
x»—>\/ X Q:en2 = qe—2i0
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We will study

Hamiltonian

9
Vx4 —x)2+6

lowest singlet (spatially symmetric) and triplet (spatially antisymmetric) states

+

L -y
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We will study

Hamiltonian

8
(x1 —x2)2+ 6

+

lowest singlet (spatially symmetric) and triplet (spatially antisymmetric) states

Cl method

The eigenstates of the system determined through diagonalization of the truncated Hamiltonian
matrix [H]y« m, the elements of which are given by

Hpmip = / Y (X1, X2) i} (x4, X2) dxy e

Both bound and resonant states obtained with the value of the nonlinear parameter set to Qp
that fulfils the stationarity equation

dEfg ‘
dQ 19=Qqp

For bound-states the nonlinear parameter Qq is a real and positive number. For resonances it
turns out to be a complex number Qqpt = aop,e‘z’eopf, which results in complex energy

eigenvalues. The convergent results obtained with the Hamiltonian matrix [Hﬂopt]MxM of
dimension M = 324 for the triplet state and M = 342 for singlet state.
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Results for quasi-1D Gaussian QDs

Resonance energies and widths
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The effect of V{, on energies

The analysis of the effect of
the depth of the longitudinal
trapping potential on the
spectrum performed at fixed
confinement anisotropy

6 = 0.01.The black points
represent the thresholds gy,
which separate bound states
from resonances.

@ The triplet thresholds are lower than the singlet ones and the
differences between them decrease for increasing V.

@ The energies of singlet states lie below the corresponding triplet

ones and the singlet-triplet degeneracy is achieved in the Iint

g — <.

A. Kuros, A. Okopinska (UJK)
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The effect of V, on resonance width

Above the autoionisation 06
thresholds, the energy

. . 05
eigenvalues acquire an

imaginary part which 04
determines the width T" of the
corresponding resonance 03
state.

0.2

0.1

@ The lifetime of resonant states increases with increasing v, and
decreasing g.

@ The singlets decay faster than the corresponding triplets, butgth
differences diminish with increasing depth of the trap. j

Jon Kochanouski
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The effect of the lateral radius ¢ on the energy

The influence of confinement anisotropy studied for a trap of fixed depth V, = 10.

singlet energies ¢J triplet energies €

_af B 1

-10F o ’,f”’ 4

€ \»/,/ ES0001

—12p-” 001 b

~14+ P R ~14t

e ‘ ‘ ‘ ‘ 6 ‘ ‘ ‘ ‘

0 1 2 3 4 5 0 1 2 3 4 5

@ Both the singlet and triplet energies monotonically increase when § decreases.

@ The threshold values of the interaction strength 937’ which separate bound states from
resonances, get smaller with decreasing 6. J (
(Qmed)

For the pure Coulomb interaction 6 = 0, the singlet and triplet energies are degenerate cIm
except at the point g = 0 where the dependence of the singlet energy on 4§ is discontinuous.™ Uniersity
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Energy differences Ae}, = € — €},

The influence of confinement anisotropy studied for a trap of fixed depth V, = 10.

singlet energy differences A« triplet energy differences Ae?
s t

04

Ael*
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The differences of the resonance widths

The influence of confinement anisotropy studied for a trap of fixed depth V, = 10.

The differences of the resonance widths

Arg, =T0-T3,,

where 0 is for pure Coulomb interaction.

@ After initially increasing, the differences Arg’, go through the maxima and then slowly

decrease with increasing g.

University

@ For smaller values of the cut-off parameter § the differences are smaller.
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Results for quasi-1D Gaussian QDs

Entanglement entropies
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One-particle entanglement

One-particle reduced density matrix 1-RDM

pr1E1) = [ W(E1 o V1 oy )PPy

MMMMMMMMMMM
University
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One-particle entanglement

One-particle reduced density matrix 1-RDM

3 3
r17r1 /w(r1’r27~"7 w(r1)r27 = 7rN)d rp...d%ry

v

admits a Schmidt decomposition:

p(rr) =D Mk(ux(r), > M =1.
Entanglement spectrum: the occupancies {\} of natural orbitals {uk(r)} characterise
entanglement between one of the particles and the rest of the system.

A\
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One-particle entanglement

One-particle reduced density matrix 1-RDM

3 3
r17r1 /w(r1’r27~"7 w(r1)r27 = 7rN)d rp...d%ry

V.

admits a Schmidt decomposition:

p(rr) =D Mk(ux(r), > M =1.
Entanglement spectrum: the occupancies {\x} of natural orbitals {uk(r)} characterise
entanglement between one of the particles and the rest of the system.

1
| A

Measures based on 1-RDM
e von Neumann entropy: S = —Tr[plnp] = — > Mg In A\
2

o linear entropy: L=1-Tp2=1-3Y X2

e Rényi entropies: limp1 Sn = S
Sq= 115 In Tr(p%) = 71 NN} ggz—ln(1—L)

.. Elooo

\'\
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Entanglement entropies calculated by real stabilization
method

Vo =4and o =0.1

real linear entro real von Neumann entropy
y

~2i0 ]

Q=cae€

s . . . 00 L L L L L
14 16 18 20 22 24 14 16 18 20 22 24

Entropies calculated by real stabilization method provide information on critical behavior
of the two-particle QD. L
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Entanglement entropies calculated by complex scaling
Vo =106 = 0.01

Real part of linear and von Neumann entropies of the singlet state

Rel§ ]
=

g
Real parts of entropies calculated by complex scaling are smooth functions of the interacL e
strength g. The entropies acquire imaginary parts at autoionization thresholds.
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Entanglement entropies in the Moshinsky model
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Moshinsky model

N-particle Moshinsky Hamiltonian

Heisenberg 1926, Moshinsky 1968

Confined by V(x) = M, interacting via U(x;, X;) = A(x; — x;)?
2 j j

Rescaled Hamiltonian (x +— /- x, E +— hQE)

H= Z[f—Jr “XF1+ 9> (% — %)%,

i<j

where g = -2 - interaction / trapping strength; g < 0 - repulsive interaction
Q

| 3
A

Analytic solution: ground state
= \/m Geritical = *217\/
Y

exact wave function: Y, r)=(L) % e 2 (l> e—yT, where r2 = 3N, y?

exactenergy: E=J(N—1)w+ 5.

exact linear entropy: L = 1 — N\/w(N272N+2)r2(gN+1)(N71)

A. Kuros, A. Okopinska (UJK) Properties of the Gaussian quantum dot Critical Stability, Santos 2014
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Moshinsky model N = 2: gcriticas = —%

exactenergy: E=1\/4g+1+1.

- \/20++/2gH1+1—v2 4 /4g+1
exact linear entropy: [ = Y2 V9T 1 VIV
V204 /g1 +1

v
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Cl results for the Moshinsky model N = 2

Real part of the lowest energy: E =1,/4g+1+ 1.

_ 4
Real part of the linear entropy: L = V201 \/AgtTH1-v2{/ag+1
V2g+\/Agt1+1

v
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Summary

quasi-1D Gaussian QD

@ The depth of the longitudinal trapping potential has an important effect on the critical value
of the interaction strength gy, at which the bound state is transformed into a resonance,
namely the larger is the value of V, the larger is gy.

@ The impact of the lateral radius of the quasi-1D QD is the most visible near the ionization
thresholds for triplet states.

@ Entanglement entropies calculated by real stabilization method show a critical behavior at
the autoionization threshold.

@ Entanglement entropies calculated by complex scaling acquire the imaginary part at the
autoionization threshold, but their real parts don’t show a critical behavior there.

University

A. Kuros, A. Okopinska (UJK) Properties of the Gaussian quantum dot Critical Stability, Santos 2014 31/31



Summary

quasi-1D Gaussian QD

@ The depth of the longitudinal trapping potential has an important effect on the critical value
of the interaction strength gy, at which the bound state is transformed into a resonance,
namely the larger is the value of V, the larger is gy.

@ The impact of the lateral radius of the quasi-1D QD is the most visible near the ionization
thresholds for triplet states.

@ Entanglement entropies calculated by real stabilization method show a critical behavior at
the autoionization threshold.

@ Entanglement entropies calculated by complex scaling acquire the imaginary part at the
autoionization threshold, but their real parts don’t show a critical behavior there.

Moshinsky model
@ Entanglement entropies calculated by real stabilization method show a critical behavior at
Geritical -

@ Entanglement entropies calculated by complex scaling tend to the exact results. Entropies
acquire the imaginary part at geriricar, @and their real parts show a critical behavior there.

Jon Kochanouski
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