# Gestion des données LHCb : illustration avec DIRAC

A.Tsaregorodtsev, CPPM, Marseille Réunion France-Grilles/LCG-France, 27 novembre, Lyon







Data placement, removal
 Popularity
 Data integrity
 Data policies
 Conclusions



#### General LHCb data placement rules:

- Real data: one archive and 4 disk replicas
  - Archive: write once read never
- MC: one archive and 3 disk replicas
- In both cases one of the disk replicas is at CERN (EOS)
- Includes derived data (DSTs)
- Automated data replication using DIRAC
  Transformation and Request Management Systems
  - Manual or data driven
  - Asynchronous



# LHCb Production system

- Based on the DIRAC Transformation System
  - Multiple extensions and custom plugins
- Data driven task generation
  - Triggered by new files registration in the catalog
- Generating both data processing and replication tasks
  - E.g. replication tasks according to the LHCb Computing Model





### Data Management





- Not all datasets are used equally
  - Popularity increases while datasets are created
  - When a new dataset supersedes it, its popularity decreases
  - Some datasets are most likely read only once or twice (e.g. specific event types in MC, just for a cross-check of an analysis)
- For an efficient analysis, several replicas are necessary
  - Site downtime
  - Site overload
- Before using the Data Popularity in data placement decisions it should be measured



## Data popularity measurement

- Each user job reports to the central service
  - Which LFN directories are being accessed
    - How many files in each directory
  - Site name
  - Time stamp
  - Other items can be reported
    - User name
    - Job final status

#### Accounting using DIRAC Accounting System

- Accounted values per dataset
  - Number of accesses
  - Normalized number of accesses (fraction of dataset)
- Produce popularity trend plots number of accesses per time bin



#### Example popularity plots





- Used in taking decisions on removing old datasets
  - Not automated
- Possible strategies
  - Regular data placement according to Computing Model
  - Reduce number of replicas for unpopular data
    - For how long data should be unpopular
  - For unused data remove all replicas ( except archive )
- Still under discussion
  - Do we want to use popularity to create more replicas ?
  - Can popularity trends help predicting access patterns in the ( near ) future ?



- The DIRAC File Catalog has an experimental plugin to support popularity data
  - Last access date
    - Per file, directory or dataset
    - Date of the last replica lookup
  - Average number of accesses in the last predefined period, e.g. last week
    - Per file, directory or dataset
    - An estimation
- This is being evaluated now
  - Can slow down considerably replica look-ups



## Data integrity in LHCb

- Checking consistency of different name spaces ( chasing "dark data" )
  - Physical storage
  - Logical name space in the Replica Catalog (LFC)
  - Logical name space in the Bookkeeping DB
- Using dumps of the SE and LFC name space
  - Tedious operation, T1 sites produce those on LHCb request
  - Should become easier with gfal2 capable to produce recursive SE name space reports
    - Have to see the efficiency of those reports
  - DIRAC SE and FC can provide dumps through their service interface
- Regular checks using dedicated agents
  - LHCbDIRAC extension
    - Can be moved to the core library if need would be
- IntegrityDB
  - Collecting reports on each failure to access data
  - Difficult to automate recovery measures need for manual operations
- 11



- Necessary to monitor available and used space
  - To make data placement decisions
  - To apply VO policies quotas
- In LHCb now is based on the LFC data
  - Traversing the LFC name space to build per user, per directory, per SE storage usage reports
  - Heavy operation
    - Can take several days to perform an update
    - Heavy load on LFC
- LHCb is planning to use DFC also for storage monitoring



- The Storage Usage is built in the DFC natively
- Using special prefilled tables
  - Updated at each new file or replica insertion
    - More efficient with bulk insertion
  - Instant reports for any directory
    - User data is stored in "Home" directories which allows to follow storage consumption by users
  - Possibility of instant "du" command



| FC:/> size -1 /lhcb/         | user/a/atsare | eg/1                 |
|------------------------------|---------------|----------------------|
| directory: /lhcb/use         | r/a/atsareg/1 | 1                    |
| Logical Size: 134,75         | 6,846 Files:  | 498 Directories: 500 |
| StorageElement               | Size          | Replicas             |
| 1 IN2P3-USER                 | 20,254,050    | 75                   |
| 2 CNAF-USER                  | 18,363,672    | 68                   |
| 3 RAL-USER                   | 16,473,294    | 61                   |
| 4 CERN-USER                  | 19,443,888    | 72                   |
| 5 GRIDKA-USER                | 21,064,212    | 78                   |
| 6 SARA-USER                  | 20,254,050    | 75                   |
| 7 PIC-USER                   | 18,903,780    | 70                   |
| Total<br>Query time 0.98 sec | 134,756,946   | 499                  |

#### Report of storage usage for any directory

- Whole VO data
- Per user data
- "Logical" storage
  - ▶ LFNs, sum of the LFN sizes
- "Physical" storage
  - Physical replicas, total volume per Storage Element



- Data management is the most complex activity in any LHC experiment
- DIRAC provides support for the most common data management tasks ( automated, failure-safe data placement, integrity checking, storage monitoring )
- Data popularity is very popular <sup>(2)</sup>, but is not clear how it can help in smart data placement taking into account future trends
- Efficient storage monitoring is essential in applying VO policies ( quotas )