

LHCb report (WLCG workshop) 26/11/2013

- Current Status
- Agenda 2014
- Computing Model Evolution
 - Processing Model
 - Data Management Model
 - Cloud & Opportunistic computing

LHCb Current Status (1/2)

Production

- Stripping campaign ongoing: at CC closed (started at the beginning October and ended 10-Nov-2013)
- First Tier2D sites
- CVMFS Ihcb-conddb mount point removed
- FTS3 for WAN transfers
 - Since beginning October(CERN instance,RAL backup)

LHCb Current Status (2/2)

LHCb Monitoring and WLCG Mon

DIRAC able to feed workload info into WLCG mon:

http://dashb-lhcb-ssb.cern.ch/dashboard/request.py/siteview?view=By%20tier#currentView=By%2520tier

– WLCG Site Status Board resurrected:

http://dashb-lhcb-ssb.cern.ch/dashboard/request.py/siteview?view=Storage#currentView=Storage

LHCb Agenda 2014 (1/2)

Production

 2 more stripping campaigns (probably February and September) on datasets reconstructed in 2011/12

SL6 binaries

- Most workflows can run on SL5/6, but starting from Jan
 2014 only SL6 binaries without backward compatibility
- WMS submission to be suppressed for last sites
 - ~10% of sites (~20) to be moved gradually to direct submission

LHCb Agenda 2014 (2/2)

Implementing Gaudi Storage federation

- Get local replica first, if it fails, try to access remote replicas (LHCbDirac provides an ordered list of tURLs)
- Xrootd the only data streaming access protocol
- Gsiftp for transfers (may look at http in the future)

Dirac File Catalog

- LHCb Bookkeeping Catalog (Oracle based)
 - Full info about files provenance
- DFC (MySQL based) will replace CERN LFC catalog
 - Much lighter and designed to fit exactly LHCb needs
 - Integrated "du" possibility and metadata queries

LHCb Computing Model (TDR)

Tier1:

- RAW data: 1 copy at CERN, 1 copy distributed (6 Tier1s)
- First pass reconstruction (for monitoring and calibration) at CERN+Tier1s
- End of year reprocessing of complete year's dataset.
- Each reconstruction followed by "stripping" pass -> Stripped
 DSTs distributed to CERN and all 6 Tier1s

Tier2:

- Tier2s dedicated to simulation (and analysis jobs with no input data) -> Simulation DSTs copied back to CERN and 3 Tier1s
- All disks located at CERN and Tier1s

LHCb TDR Issues

Problems with TDR model

- Inflexible use of CPU resources and pressure on storage space
 - Large peaks, increasing with accumulated luminosity. Only simulation can run anywhere
 - All sites treated equally, regardless of available space
- Challenges of Run1 (2012) and Run2 (2015)

	Design (TDR)	2012 actual	2015 design
Instantaneous luminosity (cm ⁻² s ⁻¹)	2 x 10 ³²	4×10^{32}	4 x 10 ³²
Mean visible p-p interactions/crossing (μ)	0.4	1.7	~1.0 (25ns)
Raw event size (kB)	25	60	60 (25ns)
HLT output rate (kHz)	2	5	12.5

Processing Model Evolution (1/2)

Reprocessing campaign

- First pass on <30% of RAW data for calibration within 2-4 weeks
- Full data reco in 2-4 delays without end-of-year reprocessing campaign (2015 automated online validation of calibration for offline use due to major redesign of LHCb HLT system)

Reconstruction at Tier2 sites

 Reconstruction at selected T2s (45% of reconstruction CPU time on 44 new T2 sites but also outside WLCG e.g. Yandex) -> Download RAW file (3GB) from a T1 storage, run reco job (~ 24 hours), upload Reco output file to the same T1 storage

Analysis at 5 Tier2D

Before 2013 no T2 sites provided disk for LHCb

Data Management Evolution (1/2)

Reduced archival for Tape Storage

Archives of all derived data exist as single tape copy

T2Ds for Disk Storage

- https://twiki.cern.ch/twiki/bin/view/LHCb/T2DCommissioning
 - Disk storage (dCache, DPM or other): SRM service + 300 TB minimum per site (replicas necessary for analysis)
 - LHCb-Disk SRM space tokens (LHCb-USER is optional)
 - xrootd access with WAN access (for federate storage elements)

Data Management Evolution (2/2)

- Data format for analysis
 - from DST, contains copy of RAW and full Reco information (~120kB/event) to microDST (~13kB/event)
- Dynamic data placement based on free space availability:
 - Automated selection of disk replication sites: random choice weighted by the free space
- Replica removal and data popularity (soon to be automated):
 - For processing n-1: reduce to 2 disk replicas
 - For processing n-2: only keep archive
 - Replicas data popularity: table per dataset, last access date, number of accesses in last (n) months, its size.

Processing Model Evolution (2/2)

Distinction between Tiers for different types of processing activities is becoming blurred.

Prod managers already attach/detach sites manually to different production activities in DIRAC config system

In the future sites declare their availability for a given activity and provide the corresponding computing resources. Besides DIRAC allows easy integration of non-WLCG resources

LHCb Cloud integration (1/4)

What for?

- Running production in a more flexible way -> Pro/Con: lots of flexibility for a VO but at the price of becoming sysadmins rather than just users (reliability, security and monitoring)
- Extremely handy testing and validating SW on different OS/SW/HW configurations to certify Grid middleware.
- LHCbDIRAC Server Infrastructure: critical ratio components/resources (16 machines, ~40 different services, ~40 different agents, ~20 MySQL DBs & 1 Oracle DB) if a machine has issues, many services will stop working

LHCb Cloud integration (2/4)

secreted on 2013-10-11 08-05-45-000

- No big numbers. In contrast, very solid infrastructure.
- Running on Production at:
 - > CERN (OpenStack):
 - CLOUD.CERN.ch,
 - CLOUD.CERNMP.ch.
 - > PIC (OpenNebula):
 - · CLOUD.PIC.es.
 - > RAL (StratusLab):
 - VERY SOON!
- Jobs we run:
 - > MC,
 - Data processing.

	Center state on 2013-10-11 00:03:13 0				
Cloud Site	Count	RAM *	Disk *	VCPUs	
CLOUD.CERN.ch	26	4	40	2	
CLOUD.CERNMP.ch	4	8	80	4	
CLOUD.PIC.es	75	2	10	1	
∑Total	105	286	2.11K	143	B

LHCb Cloud integration (3/4)

Basic VM settings:

OS: CERNVM

SW distro: CVMFS

LHCb Config: Amiconfig (not CloudInit)

Models:

- Cloud + Batch System
- Cloud + VMDirac (VM Registry, Scheduler, Monitor)
- Vacuum

LHCb Cloud integration (4/4)

Critical questions a VOs/Experiments:

- How to deal with authentication/authorization and host certificates?
- What contextualisation? What VM image? Custom or per VO?
- How to interface with hypervisor/host? How do we implement sharing machanisms?
- HEPiX files? Shutdown procedure (VMs lifetime: run forever, load based, credit based, shutdown-on-demand)?
- Accounting: just use wall clock time weighted by HEP06?
- Outages announced via GocDB? Automatic laaS discovery (BDII?)
- Isn't useful a common marketplace for all the clouds we use?
- How does storage fit into all this?

Opportunistic computing:

- CERN HLT Farm: no virtualization, no pilot sub, PVSS driven (17% of the LHCb CPU during LS1). LHCb is not planning to use HLT farm for offline work during inter-fill gaps after LS1
- Volunteer Computing (BOINC)

Job masonry:

With flexible MC jobs (n° of events adapted to resources available)

LHCb Operation Summary

Put in production

- First 5 Tier2D sites
- Switch to FTS3

Currently Ongoing

- Implement Storage federation
- WLCG/SSB for site admins
- WMS decommissioning for last sites

Future

- Move to Dirac File Catalog
- Only sl6 binaries from Jan '14
- LHCb Dirac and Cloud/Opportunistic Computing integration