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Prospects for X-ray Astronomy
in the High Energy Domain

Our favorite objects:
e Supernovae

 Gamma-ray bursts

e Neutron stars
Pulsars
Magnetars

 Black holes
Galactic X-ray binaries
Active Galactic Nuclel
Ultraluminous X-ray sources

White dwarfs
Cataclysmic variables




Prospects for X-ray Astronomy
in the High Energy Domain

The Universe as a laboratory

Fundamental guestions related to X-ray astronomy

* What is the equation of state of ultra-dense matter?
* Does General Relativity hold in the strong field limit?



The Universe as a laboratory -
Ultra-dense matter

» Equation of state for
the interior of neutron
stars?

* P(n) puts precise
constraints on M/R

* Measure M/R from
relativistic shift of
absorption features
for slowly rotating
neutron stars

Sanval, Pavlov et al. (2002)



The Universe as a laboratory -

Ultra-dense matter

* For faster rotation,

M/R is constrained % 0.2F 40028-01-06-00 § 4Q028-01-08-00 1
from timing analysis g o i -
of the pulsed g oo _l:r{—:l‘:'_ .
emission £ o | _
-0.2 . ; ; . , . \ .

e Confrontation to S LA N -~
(re|ativistic) mOdel of 3 0.2F  40030-03-04-00 I 40031-01-01-06 § 50030-02-08-01 1
rotating hot-spots g oy i \\i n |

g 0‘0'_|;l-:|=-|&|_" zl— .
- Better constraints on  } L.} + | i 4]
M/R for more objects ~0.2 .

requires high- > 0
resolution timing

15 20 5 10 15 20
Energy (keV)

5 10 15 20

Artige et al. (2013)



The Universe as a laboratory -
Ultra-dense matter
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— Measuring the mass and radius of a neutron star to decide
about the equation of state

— Accurate constraints on the pulse shape

(Simulations for LOFT)



The Universe as a laboratory -

GR in strong fields

X-rays from the close vicinity
of compact objects

e Quasi-thermal emission
from the accretion flow

 Non-thermal emission
from the corona
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The Universe as a laboratory -
GR in strong fields

national hawtes édnargi

Determining black hole spin from iron line fitting
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- Broadening obtained is possibly

biased by the observational analysis SImilaren ol dige Proyigdor
an irradiated accretion disk

: : _ around a black hole with
- Alternative interpretation as an different spin parameters

absorption feature is still in play



The Universe as a laboratory -
GR in strong fields
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The Universe as a laboratory -
GR in strong fields

Programme national hautes énergies

GRS 1915+105 — Pathfinder Mission Scenario, T = 500 ksec, i = 70°

GRS 1915+103 — Pathfinder Mission Scenario GRS 1915+105 — Pathfinder Mission Scenario
500ks — 3 o errors — 7=1.0, 8=70 deg 500ks — 3 o errors — 7=1.0, 6=70 deg
O.08BF 1 T T T T T T L— ] 1|:|: T T 1 T T L T T
e 3 = -
o 0.07F o = o -
K= r ] 3‘ 0k
5 s _ ; =
R . 3 E
5 0.06F 3 5 -
g : E 5 _1oF
= g 3 3] E
005 = o r
g a E s .
o = »
LT " F 4 . =] _QD—
=t C E— - = 1 C
0.04f — ] e 2
: ] £
oo3bE . o s ] - 30
0 2 4 & a8 10 12 a0

Energy (ke\) Energy (ke

Dovciak et al. (2008)

« X-ray polarimetry can be applied to measure black hole spin

 Independent from iron line or continuum fitting method
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The Universe as a laboratory -
GR in strong fields

data/model

Programme national hautes énergies
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Prospects for X-ray Astronomy
in the High Energy Domain

Compact objects and their environment

Fundamental questions related to X-ray astronomy

* What is the physics of the accretion flow?

* What is the link between accretion and ejection and how
does it relate to the spin of the compact object?

* What builds and collimates relativistic jets?

* What fraction of the accretion flow returns to the ambient
medium?




The Universe as a laboratory -

Compact objects
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The Universe as a laboratory -

Compact objects S :
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The Universe as a laboratory -

Compact objects

Constraining the corona temperature

from hard X-ray observations

« So far, the cut-off energy of the
reprocessed spectra emitted
close to compact objects has
not been constrained

 For some AGN this became
possible with NuSTAR

nomalized counts 57 ke !

ratio

.| With High Energy Cutoff

L
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NuSTAR spectrum of MCG-5-23-16
(Balokovic et al., in prep.)

E_ ~100 keV



The Universe as a laboratory -
Compact objects

Programme national hautes énergies
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The Universe as a laboratory -
Compact objects

* Powerful winds being
launched of accretion
disks around compact
objects

 Enrichment of
Interstellar matter

e Accretion budget

e Determination of
density, outflow velocity,
and covering factor Proga et al. (2000)
gives mass loss rate




The Universe as a laboratory -
Compact objects

* Powerful winds being
launched of accretion
disks around compact
objects

0,12 | ghell n=2

 Enrichment of
Interstellar matter

e Accretion budget

¥ lgo shell n=1 (ground)

* Determination of
density, outflow velocity,

and covering factor Porquet et al. (2000)

gives mass loss rate Applicable also for
- Sgr A*

- ULXs
- plasma in astrophysical jets...

Simplified Gotrian diagram of He-like ions.




The Universe as a laboratory -
Compact objects

The echo of the fading Sgr A*
Time-dependent hard X-ray photometry
and imaging of the Galactic Center

INTEGRAL

date, year

Terrier et al. (2000)




Prospects for X-ray Astronomy
in the High Energy Domain

Explosive phenomena

Fundamental questions related to X-ray astronomy

* What is the nature of the progenitor?

* What are the detalls of the explosion?

* What is the physics of the ejected material?
* What are the products of the explosion?




Explosive phenomena -

Programme national hautes énergies

Supernovae
Open questions: jrr e ,
! Old Classification :
: Type | Type Il
* Progenitors? g no fyciogen [ ﬂﬁw
» Detalls of explosion? " Thermonuclear ;
- Ejectaf; . _supernovae /.
' . I Tyeen BB
* Product of explosion? :\_*,: __
e Nucleosynthesis? ; " Typell
« Cosmic ray : —
acceleration? no 51 o procent | CERERRSE N
e Neutrino emission? Core Collapse Supernovae

; Vink et al. (2012)
Young Galactic SNR are key sources!

— Possibility to study the explosion by
Imaging-resolved X-ray spectroscopy of the ejecta.



Explosive phenomena -
Supernovae

Example of the Tycho SNR
(SN 1572)

* Thermonuclear explosion of an
accreting white dwarf

« X-ray filaments are shocked
regions of particle acceleration

* Need to examine the ejecta
emission using X-ray line
diagnostics

Three-color Chandra image of Tycho’s SNR

. 7 ) Red: Fe-L emission
IS required (a few eV Iinstead S N LT T

of today's 100 eV) Blue:  4-6 keV continuum

- X-ray fine spectroscopy



Explosive phenomena -

Supernovae

Goals for young
SNR

* Resolve the
spatial structure of

X-ray line velocities  3p4vdre simulat

e Distinguish
between
approaching and
receding shocks

e Find asymmetries
In the SNR shell
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Explosive phenomena -

Supernovae

Goals for older SNR

* Resolve well the
soft X-ray emission
lines around 1 keV

» Access to detailed
line diaghostics to
determine T and n

* Clearly locate the
level of the underlying
continuum

Programme national hautes énergies

i REGION 01

SMC SNR 0102-72.3
XMM-Newton data
(Sasaki et al. 2001)

1
0.2 0.5 1 2
channel energy (keV)

Fig. 3. Spectrum and fitted double VGNEI model of the north-
eastern part of the SNR



Prospects for X-ray Astronomy
in the High Energy Domain

Cosmic rays

Fundamental questions related to X-ray astronomy

* What is the composition and origin of Galactic cosmic rays
with (1017 eV > E > 100 MeV) ?

* How to understand the “knee” of the cosmic ray spectrum
at PeV energies?



Prospects for X-ray Astronomy

in the High Energy Domain

e Supernova are best candidates
to explain Galactic cosmic rays

 Important synergy between X-
ray and gamma-ray observations

H.E.S.S. RX J1713-3946

Cosmic Ray Spectra of Various Experiments

H.E.S.S. collaboration
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Prospects for X-ray Astronomy
in the High Energy Domain

New astrophysical messengers

Fundamental questions related to X-ray astronomy

* What can we learn from gravitational wave and neutrino
observations?

» What astrophysical particles can be revealed by X-ray
emission?



The Universe as a laboratory -

Axion-like particles

Quantum Chromo-Dynamics

 Fundamental problem of the
broken CP-symmetry (charge
conjugation and parity switch)

* Adding a new type of scalar
particle in the framework of the
Peccei-Quinn theory

» Axion-like particles with so far
unknown mass and coupling
constant
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The Universe as a laboratory -

Axion-like particles

X-ray measurements from the
Hydra Cluster

« Axion-like particles can couple
to two photons (quantum
oscillations)

*One X, one B field

e Coupling is more efficient in
strongly magnetized
environments

— Searching for perturbations
of the synchrotron spectrum
emerging from the turbulent
central galaxy of the Hydra A
cluster

Hydra galaxy cluster
Radio/Optical/X-ray




The Universe as a laboratory -
Axion-like particles

Determination of the B-field by Faraday radiation of
the polarized synchrotron emission

i ¢ = RM x X\° + ¢
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The Universe as a laboratory - %

Axion-like particles
Powerful X-ray source

Non-thermal component extracted with

Chandra
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The Universe as a laboratory -

Axion-like particles
Powerful X-ray source

Non-thermal component extracted with

Chandra
T S
o
<
5 faD
- og
43 /8 =
. . . | / N (=
How much irregularity is ~ f /e S
£ 3~ / e 4 N
allowed ? o F / 3 S
J | | &
21 .
Derive constraints on a T / E
StatiSticaI baSiS l_ L1 | |\H\THH'I‘"--L- |/"|f.j|f TR N VI B i
DD 0.2 0.4 0.6 0.8 1

g, [10"GeV']



Prospects for X-ray Astronomy
in the High Energy Domain

(preliminary) Conclusions

No — XEUS is no longer in the game.

But, for the sake of the science that we
presented here, we still need :

- Large collecting areas -
We want to see faint sources

- High angular and spectra resolution -
We want to see spatial details of the sources

- Interchangeable instrumentation -
We want to look at the object in different ways
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