

More figures on AFTER@LHC

Jean-Philippe Lansberg IPN Orsay, Université Paris-Sud

Joint meeting IPNO-LAL LUA9-AFTER, 18-20 November 2013 Orsay, France

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed Target ExpeRiment at the LHC

4 3 > 4 3

• Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$

э

イロン イ団 とく ヨン ・ ヨン …

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

(日)

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} imes N_{target} = N_{beam} imes (
ho imes \ell imes \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

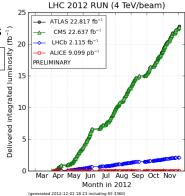
• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called	LHC	years]
----------------	-----	--------

Target	ρ (g.cm -³)	A	⊥ (μb ⁻¹ .s ⁻¹)	∫£ (pb ⁻¹ .yr ⁻¹)
Sol. H ₂	0.09	1	26	260
Liq. H ₂	0.07	1	20	200
Liq. D ₂	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
w	19.1	185	31	310
Pb	11.35	207	16	160

• 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)

< ロ > < 同 > < 回 > < 回 >

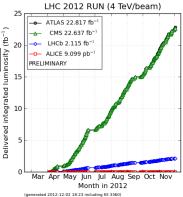

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$

3

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !


4 A 1

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan • Run14pp 12 pb⁻¹ @ $\sqrt{s_{MN}} = 200 \text{ GeV}$
 - Run 14pp 12 pb $\frac{1}{2} @ \sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \text{ pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$

4 3 > 4 3

Luminosities

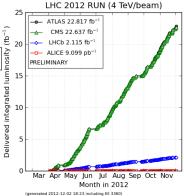
- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan
 Run14pp 12 pb⁻¹ @ \sqrt{s_NN} = 200 GeV
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \ \text{pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \ \text{GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger

LHC 2012 RUN (4 TeV/beam) 25 ATLAS 22.817 fb-CMS 22 637 fb⁻¹ 20 HCb 2.115 fb⁻¹ **Delivered integrated luminosity** ALICE 9.099 pb-1 PRELIMINARY 15 10 Mar Apr May Jun Jul Aug Sep Oct Nov Month in 2012 (generated 2012-12-02 18:23 including fill 3360

Image: A matrix and a matrix


() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51....)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets \hat{f}_{g}

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan · Run14pp 12 pb⁻¹ @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \text{ pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \text{ GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
- Lumi for Pb runs in the backup slides (roughly 10 times that planned for the LHC)

< ロ > < 同 > < 回 > < 回 >

Luminosities

Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{\textit{beam}} \times \textit{N}_{\textit{target}} = \textit{N}_{\textit{beam}} \times (\rho \times \ell \times \mathscr{N}_{\textit{A}}) / \textit{A}$$

 $\Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \ \ell = 1 \text{ cm} \text{ (target thickness)}$

- Integrated luminosity $\int dt \mathscr{L} = \mathscr{L} \times 10^6$ s for Pb
- Expected luminosities with 2×10⁵Pb s⁻¹ extracted (1cm-long target)

Target	ρ (g.cm -³)	Α	£ (mb ⁻¹ .s ⁻¹)=∫£ (nb ⁻¹ .yr ⁻¹)
Sol. H ₂	0.09	1	11
Liq. H ₂	0.07	1	8
Liq. D ₂	0.16	2	10
Ве	1.85	9	25
Cu	8.96	64	17
w	19.1	185	13
Pb	11.35	207	7

- Planned lumi for PHENIX Run15AuAu 2.8 nb⁻¹ (0.13 nb⁻¹ at 62 GeV)
- Nominal LHC lumi for PbPb 0.5 nb⁻¹

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$

イロト イポト イラト イラト

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ *p*⁺s⁻¹
- Extracted intensity: $5 imes 10^8~p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \text{ km.s}^{-1}/27 \text{ km} \simeq 11 \text{ kHz}$

イロト イポト イラト イラト

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 imes 10^8~p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - $\bullet~$ the crystal sees $2808 \times 11000~s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,

no pile-up !

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

no pile-up !

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhei, UJ Uggerhei, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \; s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s} \text{ h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

< 日 > < 同 > < 回 > < 回 > < □ > <

similar figures for the Pb-beam extraction

no pile-up !

• absence of pile-up: about one coll. per bunch passing (25 ns)

< ロ > < 同 > < 回 > < 回 >

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s

4 3 5 4 3 5 5

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s
- average collisions rate per second: $\mathscr{L} \times \sigma_{tot}^{pp}$ (if \mathscr{L} is in unit of s^{-1})

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s
- average collisions rate per second: $\mathscr{L} \times \sigma_{tot}^{pp}$ (if \mathscr{L} is in unit of s^{-1})

• Taking
$$\sigma_{tot}^{pp} \simeq$$
 45 mb (at \simeq 115 GeV)

•
$$4 \times 10^7 (s^{-1}) = \mathscr{L}_{max}(mb^{-1} s^{-1}) 45 (mb)$$

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s
- average collisions rate per second: $\mathscr{L} \times \sigma_{tot}^{pp}$ (if \mathscr{L} is in unit of s^{-1})

• Taking
$$\sigma_{tot}^{pp} \simeq$$
 45 mb (at \simeq 115 GeV)

•
$$4 \times 10^7 (s^{-1}) = \mathscr{L}_{max}(mb^{-1} s^{-1}) 45 (mb)$$

• $\mathscr{L}_{max} \simeq 2 \text{ nb}^{-1} \text{ s}^{-1}$

ok with the table above

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s
- average collisions rate per second: $\mathscr{L} \times \sigma_{tot}^{pp}$ (if \mathscr{L} is in unit of s^{-1})
- Taking $\sigma^{pp}_{tot} \simeq$ 45 mb (at \simeq 115 GeV)
- $4 \times 10^7 (s^{-1}) = \mathscr{L}_{max}(mb^{-1} s^{-1}) 45 (mb)$
- $\mathscr{L}_{max} \simeq 2 \text{ nb}^{-1} \text{ s}^{-1}$ ok with the table above
- Refinement: Poisson distr. $\mathscr{P}(n) = \frac{\mu^n e^{-\mu}}{n!}$ (μ : average # of events)

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s
- average collisions rate per second: $\mathscr{L} \times \sigma_{tot}^{pp}$ (if \mathscr{L} is in unit of s^{-1})

• Taking
$$\sigma_{tot}^{pp} \simeq$$
 45 mb (at \simeq 115 GeV)

- $4 \times 10^7 (s^{-1}) = \mathscr{L}_{max}(mb^{-1} s^{-1}) 45 (mb)$
- $\mathscr{L}_{max} \simeq 2 \text{ nb}^{-1} \text{ s}^{-1}$ ok with the table above
- Refinement: Poisson distr. $\mathscr{P}(n) = \frac{\mu^n e^{-\mu}}{n!}$ (μ : average # of events)

• For
$$\mathcal{L} = \mathcal{L}_{max}$$
, $\mu = 1$ thus
37 % no coll., 37 % 1 coll., 26 % 2 coll.

- absence of pile-up: about one coll. per bunch passing (25 ns)
- the average collisions rate per 25 ns should be smaller than one: max 4×10^7 coll. per s
- average collisions rate per second: $\mathscr{L} \times \sigma_{tot}^{pp}$ (if \mathscr{L} is in unit of s^{-1})

• Taking
$$\sigma_{tot}^{pp} \simeq$$
 45 mb (at \simeq 115 GeV)

- $4 \times 10^7 (s^{-1}) = \mathscr{L}_{max}(mb^{-1} s^{-1}) 45 (mb)$
- $\mathscr{L}_{max} \simeq 2 \text{ nb}^{-1} \text{ s}^{-1}$ ok with the table above
- Refinement: Poisson distr. $\mathscr{P}(n) = \frac{\mu^n e^{-\mu}}{n!}$ (μ : average # of events)
- For $\mathcal{L} = \mathcal{L}_{max}$, $\mu = 1$ thus 37 % no coll., 37 % 1 coll., 26 % 2 coll.

• For
$$\mathcal{L} = \frac{1}{10}\mathcal{L}_{max}$$
, $\mu = 0.1$ thus
90.5 % no coll., 9 % 1 coll., 0.5 % 2 coll.
(ratio 1 coll. vs. 2 coll. : better)

• Is the extraction of half the beam loss realistic ?

イロト イヨト イヨト イヨト

- Is the extraction of half the beam loss realistic ?
- Is the extracted flux constant over a (10h) fill ?

< ロ > < 同 > < 回 > < 回 >

- Is the extraction of half the beam loss realistic ?
- Is the extracted flux constant over a (10h) fill ?
- Political problems aside, could we extract more than half the beam loss ?

- Is the extraction of half the beam loss realistic ?
- Is the extracted flux constant over a (10h) fill ?
- Political problems aside, could we extract more than half the beam loss ?
- Are there any difficulties to extract Pb ions ?

4 3 5 4 3 5 5

- Is the extraction of half the beam loss realistic ?
- Is the extracted flux constant over a (10h) fill ?
- Political problems aside, could we extract more than half the beam loss ?
- Are there any difficulties to extract Pb ions ?
- Would a better collimation of the LHC beam, by reducing the halo, decrease the flux of extracted particles ?

4 3 5 4 3 5 5

- Is the extraction of half the beam loss realistic ?
- Is the extracted flux constant over a (10h) fill ?
- Political problems aside, could we extract more than half the beam loss ?
- Are there any difficulties to extract Pb ions ?
- Would a better collimation of the LHC beam, by reducing the halo, decrease the flux of extracted particles ?
- Is it possible to extract during the beam-energy ramp?

for Pb, from $\sqrt{s_{NN}} = 19$ GeV up to 72 GeV.