Spin physics with AFTER

Cynthia Hadjidakis

Joint meeting LUA9-AFTER Orsay, November 18th 2013

- Nucleon spin physics
- Physics opportunities with AFTER
- Polarizing the target

Probing the nucleon structure

Nucleon constituents: quarks (u, d, s, ...) and gluons

Deep inelastic scattering experiments: $1 p \rightarrow 1 X$ scale = Q: virtual photon energy

Drell-Yan experiments: $p p \rightarrow l^+ l^- X$ scale = $Q: l^+ l^-$ invariant mass

and also:

$$p p \rightarrow jet$$

$$p p \rightarrow W, Z$$

 $p p \rightarrow Isolated photons$

• • •

Momentum distribution function f_1 measurements $\rightarrow q(x,Q^2)$: parton distribution functions (pdfs) probability to find a parton in the nucleon with a longitudinal momentum fraction x at momentum transfer Q^2

Deep Inelastic Scattering (DIS)

Probing the nucleon structure

Nucleon constituents: quarks (u, d, s, ...) and gluons

Deep Inelastic Scattering (DIS)

Deep inelastic scattering experiments: $1 p \rightarrow 1 X$ scale = Q: virtual photon energy

Drell-Yan experiments: $p p \rightarrow l^+ l^- X$ scale = $Q: l^+ l^-$ invariant mass

and also:

$$p p \rightarrow jet$$

$$p p \rightarrow W, Z$$

 $p p \rightarrow Isolated photons$

• • •

Momentum distribution function f_1 measurements $\rightarrow q(x,Q^2)$: parton distribution functions (pdfs) probability to find a parton in the nucleon with a longitudinal momentum fraction x at momentum transfer Q^2

The spin puzzle of the nucleon

Nucleon spin = 1/2: how do the partons form the nucleon spin?

INSTITUT DE PHYSIQUE NUCLÉAIRE

Parton distribution functions

8 distributions

- three leading twist pdfs: f_1 , g_1 and h_1
 - depend on (x, Q^2)
- five Transverse Momentum Distributions (TMDs)
 - depend on (x, Q^2, k_T) with k_T the parton transverse momentum \rightarrow 3-D picture of the nucleon
 - vanish when integrating over k_T
 - describe the correlations between the parton or the nucleon spin with the parton transverse momentum: spin-orbit correlations

nucleon polarization

quark polarization				
	U	L	T	
U	f_1		h_1^{\perp}	
L		g 1L	$h_{1 ext{L}}^{\perp}$	
T	f_{1T}^{\perp}	g 1T	h_1 $h_{1\mathrm{T}}^{\perp}$	

quark notarization

unpolarized targets

polarized targets: measure single spin asymmetries $\Delta \sigma = \sigma^{\uparrow}$ - σ^{\downarrow}

Parton distribution functions

8 distributions

- three leading twist pdfs: f_1 , g_1 and h_1
 - depend on (x, Q^2)
- five Transverse Momentum Distributions (TMDs)
 - depend on (x, Q^2, k_T) with k_T the parton transverse momentum \rightarrow 3-D picture of the nucleon
 - vanish when integrating over k_T
 - describe the correlations between the parton or the nucleon spin with the parton transverse momentum: spin-orbit correlations

Parton distribution functions

8 distributions

- three leading twist pdfs: f_1 , g_1 and h_1
 - depend on (x, Q^2)
- five Transverse Momentum Distributions (TMDs)
 - depend on (x, Q^2, k_T) with k_T the parton transverse momentum \rightarrow 3-D picture of the nucleon
 - vanish when integrating over k_T
 - describe the correlations between the parton or the nucleon spin with the parton transverse momentum: spin-orbit correlations

Kinematics: 7 TeV proton beam on fixed hydrogen/deuterium target

- $\sqrt{s} = 115 \text{ GeV}$ and $y_{\text{beam}} = 4.8$
- $\tau = x_{beam} x_{target} = (M^2/s) = x_{min}$
- $\bullet \quad \mathbf{x_{target}} = \mathbf{x_{beam}} = \mathbf{M}/\sqrt{\mathbf{s}}$

Kinematics: 7 TeV proton beam on fixed hydrogen/deuterium target

- $\sqrt{s} = 115 \text{ GeV}$ and $y_{beam} = 4.8$
- $\tau = x_{\text{beam}} x_{\text{target}} = (M^2/s) = x_{\text{min}}$
- $\bullet \quad \mathbf{x_{target}} = \mathbf{x_{beam}} = \mathbf{M}/\sqrt{\mathbf{s}}$

Xbeam

 $x_{\text{target}} = x_{\text{beam}}$

Xtarget

Kinematics: 7 TeV proton beam on fixed hydrogen/deuterium target

- $\sqrt{s} = 115 \text{ GeV}$ and $y_{beam} = 4.8$
- $\tau = x_{\text{beam}} x_{\text{target}} = (M^2/s) = x_{\text{min}}$
- $\bullet \quad \mathbf{x_{target}} = \mathbf{x_{beam}} = \mathbf{M}/\sqrt{\mathbf{s}}$

y < 0

Xtarget

 $x_{\text{target}} = x_{\text{beam}}$

Xbeam

Kinematics: 7 TeV proton beam on fixed hydrogen/deuterium target

- $\sqrt{s} = 115 \text{ GeV} \text{ and } y_{\text{beam}} = 4.8$
- $\tau = x_{beam} x_{target} = (M^2/s) = x_{min}$
- $\mathbf{x}_{\text{target}} = \mathbf{x}_{\text{beam}} = \mathbf{M} / \sqrt{\mathbf{s}}$

Xtarget

 $x_{\text{target}} = x_{\text{beam}}$

 $\boldsymbol{\mathcal{X}}$ beam

Rapidity boost: good condition to access backward rapidity region and large target x_{target} and low $x_F = x_{\text{beam}} - x_{\text{target}} \rightarrow -1$: target-rapidity region

Unpolarized target: Boer-Mulders effect

Boer-Mulders effect: correlation between the **parton k**_T and **its spin** (in an **unpolarized nucleon**)

Cynthia Hadjidakis December 18th 2013 6 Orsay

Unpolarized target: Boer-Mulders effect

Boer-Mulders effect: correlation between the **parton k**_T and **its spin** (in an **unpolarized nucleon**)

Double-node structure of transverse-momentum distributions predicted for scalar and pseudoscalar quarkonia → give access to the Boer-Mulders TMD pdf for gluons

Unpolarized target: Boer-Mulders effect

Boer-Mulders effect: correlation between the **parton** k_T and **its spin** (in an **unpolarized nucleon**)

Double-node structure of transverse-momentum distributions predicted for scalar and pseudoscalar quarkonia → give access to the Boer-Mulders TMD pdf for gluons

- Experimental probes @ AFTER
- large quarkonium yields expected: scalar and pseudoscalar quarkonia: χ_{c0} , χ_{b0} , η_c , η_b
- PID and modern calorimetry

Cynthia Hadjidakis Orsay December 18th 2013

Longitudinal polarized target: helicity distr.

parton helicity distribution in a **longitudinally polarized nucleon**:

Cynthia Hadjidakis Orsay December 18th 2013

Longitudinal polarized target: helicity distr.

parton helicity distribution in a longitudinally polarized nucleon:

- Experimental probes @ AFTER
- $W^{+/-}$ \rightarrow individual helicity distribution of quark and anti-quark

December 18th 2013 Orsay

Sivers effect in a **transversaly polarized nucleon**: correlation between the **parton** k_T and the **proton spin**

Sivers effect in a transversaly polarized nucleon: correlation between the parton k_T and the proton spin

- Experimental probes @ AFTER
- Drell-Yan → quark Sivers effect
- Large asymmetries predicted in Drell-Yan for the target-rapidity region ($x_F = x_{beam} x_{target} < 0$) where the k_T spin correlation is the largest

INSTITUT DE PHYSIQUE NUCLÉAIRE

Sivers effect in a transversaly polarized nucleon: correlation between the parton k_T and the proton spin

- Experimental probes @ AFTER
- Drell-Yan → quark Sivers effect
- Large asymmetries predicted in Drell-Yan for the target-rapidity region ($x_F = x_{beam} x_{target} < 0$) where the k_T spin correlation is the largest

see also T. Liu and B.Q. Ma Eur.Phys.J. C72 (2012) 2037

Sivers effect in a **transversaly polarized nucleon**: correlation between the parton k_T and the proton spin

Non-zero gluon Sivers function produce a finite SSA for color-single J/ψ

Yuan PRD 78 (2008) 014024

December 18th 2013 Cynthia Hadjidakis Orsay

Sivers effect in a **transversaly polarized nucleon**: correlation between the parton k_T and the proton spin

- Experimental probes @ AFTER
- Quarkonia, Open Charm and Beauty (B and D mesons), isolated γ and γ -jet, $\gamma \gamma \rightarrow \text{gluon}$ Sivers effect (unknown and difficult to access with DIS experiments)

Non-zero gluon Sivers function produce a finite SSA for color-single J/ψ

Yuan PRD 78 (2008) 014024

December 18th 2013 9 Cynthia Hadjidakis Orsay

Sivers effect in a transversaly polarized nucleon: correlation between the parton k_T and the proton spin

- Experimental probes @ AFTER
- Quarkonia, Open Charm and Beauty (B and D mesons), isolated γ and γ-jet, γ γ → gluon
 Sivers effect (unknown and difficult to access with DIS experiments)

Non-zero gluon Sivers function produce a finite SSA for color-single J/ψ

Yuan PRD 78 (2008) 014024

INSTITUT DE PHYSIQUE NUCLÉAIRE
ORSAY

Cynthia Hadjidakis Orsay December 18th 2013

Luminosities in pp @ 115 GeV

- Intensity: $N_{beam} = 5.10^8$ protons.s⁻¹
- Beam: 2808 bunches of $1.15 \times 10^{11} \, \text{p} = 3.2 \times 10^{14} \, \text{p}$
- Bunch: Each bunch passes IP at the rate: ~11 kHz
- Instantaneous extraction: IP sees 2808 x 11000~3.10⁷
 bunches passing every second → extract ~16 protons in each bunch at each pass
- Integrated extraction: Over a 10h run: extract ~5.6% of the protons stored in the beam

• Instantaneous Luminosity

$$L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$$

- N_{beam} =5 x 10⁸ p⁺/s
- e (target thickness) = 1 cm
- Integrated luminosity
 - 9 months running/year
 - 1 year $\sim 10^7$ s

Target	ρ	A	£	∫£
(1 cm thick)	$(g cm^{-3})$		$(\mu b^{-1} s^{-1})$	$(pb^{-1} yr^{-1})$
solid H	0.088	1	26	260
liquid H	0.068	1	20	200
liquid D	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
W	19.1	185	31	310
Pb	11.35	207	16	160

- \Rightarrow Large luminosity in pH and pD ~ 0.2 /fb/yr for a 1 cm thick target
- \Rightarrow Larger luminosity with 50 cm or 1 m H2 or D2 target (1 m \leftrightarrow 20 /fb/yr = LHC in 2012)

Quarkonium yields in pp @ 115 GeV

In pp

- \Rightarrow RHIC @ 200 GeV x 100 with 10 cm thick H target
- ⇒ Comparable to LHCb (PPR nominal) if 1m H target
- ⇒ Large statistics for detailed studies on quarkonium production (different quarkonium states, ...)

Inclusive pp cross-sections

$$\begin{array}{c} B_{ll}\,d\sigma/dy|_{y=0} \ @\ 115 \ GeV \\ J/\psi = 20 \ nb \\ Y = 40 \ pb \end{array}$$

Target	∫dt£	$\left.\mathcal{B}_{\ell\ell}\frac{dN_{J/\psi}}{dy}\right _{y=0}$	$\left. \mathcal{B}_{\ell\ell} \frac{dN_{\Upsilon}}{dy} \right _{y=0}$
10 cm solid H	2.6	$5.2\ 10^{7}$	1.0 105
10 cm liquid H	2	$4.0\ 10^7$	$8.0\ 10^4$
10 cm liquid D	2.4	9.6 10 ⁷	1.9 10 ⁵
1 cm Be	0.62	1.1 10 ⁸	2.2 10 ⁵
1 cm Cu	0.42	5.3 10 ⁸	$1.1\ 10^6$
1 cm W	0.31	$1.1\ 10^9$	$2.3 \ 10^6$
1 cm Pb	0.16	$6.7 \cdot 10^{8}$	$1.3 \ 10^6$
$pp \text{ low } P_T \text{ LHC (14 TeV)} $	0.05	3.6 10 ⁷	1.8 10 ⁵
	2	1.4 109	7.2 106
pPb LHC (8.8 TeV)	10 -4	$1.0 \ 10^7$	$7.5 \ 10^4$
pp RHIC (200 GeV)	$1.2 \ 10^{-2}$	$4.8 \ 10^{5}$	$1.2 \ 10^3$
dAu RHIC (200 GeV)	$1.5 \ 10^{-4}$	$2.4 \cdot 10^6$	$5.9 \ 10^3$
dAu RHIC (62 GeV)	$3.8 \ 10^{-6}$	1.2 10 ⁴	1.8 10 ¹

Luminosity per year in fb⁻¹

Polarizing the hydrogen target

• Instantaneous Luminosity

$$L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$$

- $N_{\text{beam}} = 5 \times 10^8 \text{ p}^+/\text{s}$
- e (target thickness) = 50 cm

 x_p^{\uparrow} range corresponds to Drell-Yan measurements

E	ti-1		<u></u>	†	C
Experiment	particles	energy	\sqrt{s}	x_p	
		(GeV)	(GeV)		$(nb^{-1}s^{-1})$
AFTER	$p + p^{\uparrow}$	7000	115	$0.01 \div 0.9$	1
COMPASS	$\pi^{\pm} + p^{\top}$	160	17.4	$0.2 \div 0.3$	2
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
(low mass)					
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
(low mass)					
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	2
Int.Target 1					
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	60
Int.Target 2					

 \Rightarrow AFTER provides a competitive luminosity to study target spin related measurements \Rightarrow Complementary x_p range with other spin physics experiments

Target experimental setup: COMPASS example

- + Specifications
 - * Superconducting solenoid : 2.5 T
 - + 16 trim coils
 - → Field homogeneity: 10⁻⁴
 - Dipole magnet (long. or transverse): 0.5 T
 - ◆ Temperature: ~50 mK (frozen)
 - ◆ Materials: NH₃, ⁶LiD
 - → Dilution factor: ~0.4
- Performances
 - ◆ Polarization: >90%, >50%
 - + Field reversal: 8h, 24h

Space constraints for the polarized targets

Target experimental setup: COMPASS example

time relaxation ~ 1000 hours

Conclusion

- LHC proton continuous extraction with bent crystal on a fixed (polarized or not) target offers many spin physics opportunities
- High boost and large luminosities provide access to large and very large parton *x* measurements for quarks and gluons: QCD laboratory at large *x*
- Space and time constraints for the polarized targets

Rapidity boost in a fixed target mode

Very high boost:

- With 7 TeV beam $\gamma = \sqrt{s/(2m_p)} = 61.1$ and $y_{CMS} = 4.8$

- With 2.76 TeV beam $\gamma = 38.3$ and $y_{CMS} = 4.3$

• $y_{lab} = y_{CM} + y_{CMS}$ forward region: $y_{CM} > 0$ backward region: $y_{CM} < 0$

- $\eta = -\ln \tan \theta/2$ (= y for massless particles)
- With 7 TeV beam

$$y_{CM} = 0 \Leftrightarrow \theta \sim 16 \text{ mrad } (0.9^{\circ})$$

For a $2 \rightarrow 1$ process (e.g. $gg \rightarrow QQbar$)

$$x_{1,2} = \mathbf{M}/\sqrt{\mathbf{s}} \ \mathbf{e}^{\pm \mathbf{y}\mathbf{C}\mathbf{M}}$$

y_{CM}: QQbar CMS rapidity

M : QQbar mass

- $y_{lab} = 4.8 \leftrightarrow y_{CM} = 0 \rightarrow x_1 = x_2$
- backward region: $y_{CM} < 0 \rightarrow x_1 < x_2$
- $y_{lab}(J/\Psi) \sim 1.2 \rightarrow x_2 = 1$
- $y_{lab}(Y) \sim 2.4 \rightarrow x_2 = 1$

Good condition to access large target x_2 and low $x_F=x_1-x_2\rightarrow -1$: target-rapidity region