Spin physics with AFTER

Cynthia Hadjidakis

SIPN

Joint meeting LUA9-AFTER Orsay, November $18^{\text {th }} 2013$

- Nucleon spin physics
- Physics opportunities with AFTER
- Polarizing the target

Probing the nucleon structure

Nucleon constituents: quarks (u, d, s, ...) and gluons

Deep inelastic scattering experiments: $1 \mathrm{p} \rightarrow 1 \mathrm{X}$ scale $=Q$: virtual photon energy

Drell-Yan experiments: $\mathrm{p} \mathrm{p} \rightarrow \mathrm{l}^{+} \mathrm{l}^{-} \mathrm{X}$ scale $=Q: 1^{+} 1-$ invariant mass
and also:
$\mathrm{p} p \rightarrow$ jet
$\mathrm{p} p \rightarrow \mathrm{~W}, \mathrm{Z}$
$\mathrm{p} p \rightarrow$ Isolated photons

Momentum distribution function f_{1} measurements $\rightarrow \mathrm{q}\left(x, Q^{2}\right)$: parton distribution functions (pdfs) probability to find a parton in the nucleon with a longitudinal momentum fraction x at momentum transfer Q^{2}

Deep Inelastic Scattering (DIS)

Probing the nucleon structure

Nucleon constituents: quarks (u, d, s, ...) and gluons

Deep inelastic scattering experiments: $1 \mathrm{p} \rightarrow 1 \mathrm{X}$ scale $=Q$: virtual photon energy

Drell-Yan experiments: $\mathrm{p} \mathrm{p} \rightarrow \mathrm{l}^{+} \mathrm{l}^{-} \mathrm{X}$ scale $=Q: 1^{+} 1^{-}$invariant mass
and also:
$\mathrm{p} p \rightarrow$ jet
$\mathrm{p} p \rightarrow \mathrm{~W}, \mathrm{Z}$
$\mathrm{p} p \rightarrow$ Isolated photons

Momentum distribution function f_{1} measurements $\rightarrow \mathrm{q}\left(x, Q^{2}\right)$: parton distribution functions (pdfs) probability to find a parton in the nucleon with a longitudinal momentum fraction x at momentum transfer Q^{2}

The spin puzzle of the nucleon

Nucleon spin $=1 / 2$: how do the partons form the nucleon spin?

$$
\mathrm{S}_{\mathrm{N}}=\frac{1}{2}=\frac{1}{2} \overbrace{\left(\Delta \mathrm{u}_{\mathrm{v}}+\Delta \mathrm{d}_{\mathrm{v}}+\Delta \mathrm{q}_{\mathrm{s}}\right)}^{\approx 30 \%} \overbrace{\Delta \mathrm{G}+\Delta \mathrm{L}_{\mathrm{z}}^{\mathrm{q}}+\Delta \mathrm{L}_{\mathrm{z}}^{\mathrm{g}}}^{\approx 0 \%} ?
$$

total quark contribution

gluon contribution

angular momentum

Parton distribution functions

8 distributions

- three leading twist pdfs: f_{1}, g_{1} and h_{1}
- depend on (x, Q^{2})
- five Transverse Momentum Distributions (TMDs)
- depend on $\left(x, \mathrm{Q}^{2}, \mathrm{k}_{\mathrm{T}}\right)$ with k_{T} the parton transverse momentum $\rightarrow 3$-D picture of the nucleon
- vanish when integrating over k_{T}
- describe the correlations between the parton or the nucleon spin with the parton transverse momentum: spin-orbit correlations

Parton distribution functions

8 distributions

- three leading twist pdfs: f_{1}, g_{1} and h_{1}
- depend on (x, Q^{2})
- five Transverse Momentum Distributions (TMDs)
- depend on $\left(x, \mathrm{Q}^{2}, \mathrm{k}_{\mathrm{T}}\right)$ with k_{T} the parton transverse momentum $\rightarrow 3$-D picture of the nucleon
- vanish when integrating over k_{T}
- describe the correlations between the parton or the nucleon spin with the parton transverse momentum: spin-orbit correlations

Parton distribution functions

8 distributions

- three leading twist pdfs: f_{1}, g_{1} and h_{1}
- depend on (x, Q^{2})
- five Transverse Momentum Distributions (TMDs)
- depend on $\left(x, \mathrm{Q}^{2}, \mathrm{k}_{\mathrm{T}}\right)$ with k_{T} the parton transverse momentum $\rightarrow 3$-D picture of the nucleon
- vanish when integrating over k_{T}
- describe the correlations between the parton or the nucleon spin with the parton transverse momentum: spin-orbit correlations

	quark polarization				
		U	L	T	Boer-Mulders
	U	f_{1}		h_{1}^{\perp}	unpolarized targets
	L		$g_{1 \mathrm{~L}}$	$h_{1 \mathrm{~L}}^{\perp}$	polarized targets: measure
	T	$f_{1}{ }^{\perp}$	$g_{1 \mathrm{~T}}$	$h_{1} h_{1 \mathrm{~T}}^{\perp}$	$\} \quad \Delta \sigma=\sigma^{\uparrow}-\sigma^{\downarrow}$

Drell-Yan kinematics with AFTER

Kinematics: 7 TeV proton beam on fixed

 hydrogen/deuterium target- $V_{\mathrm{s}}=115 \mathrm{GeV}$ and $y_{\text {beam }}=4.8$
- $\tau=\mathbf{X}_{\text {beam }} \mathbf{X}_{\text {target }}=\left(\mathbf{M}^{2} / \mathbf{S}\right)=\mathbf{X}_{\text {min }}$
- $\quad \mathbf{x}_{\text {target }}=\mathbf{x}_{\text {beam }}=\mathbf{M} / V_{\mathbf{s}}$

Drell-Yan kinematics with AFTER

Kinematics: 7 TeV proton beam on fixed

 hydrogen/deuterium target- $\quad V_{\mathrm{s}}=115 \mathrm{GeV}$ and $y_{\text {beam }}=4.8$
- $\quad \tau=\mathbf{X}_{\text {beam }} \mathbf{X}_{\text {target }}=\left(\mathbf{M}^{2} / \mathbf{s}\right)=\mathbf{x}_{\text {min }}$
- $\quad \mathbf{x}_{\text {target }}=\mathbf{x}_{\text {beam }}=\mathbf{M} / \sqrt{l}_{\mathbf{s}}$
$\boldsymbol{y}>0$
$\boldsymbol{x}_{\text {beam }}$
$\boldsymbol{x}_{\text {target }}=\boldsymbol{x}_{\text {beam }}$
$\boldsymbol{x}_{\text {target }}$

Drell-Yan kinematics with AFTER

Kinematics: 7 TeV proton beam on fixed

 hydrogen/deuterium target- $\quad V_{\mathrm{s}}=115 \mathrm{GeV}$ and $y_{\text {beam }}=4.8$
- $\quad \tau=\mathbf{X}_{\text {beam }} \mathbf{X}_{\text {target }}=\left(\mathbf{M}^{2} / \mathbf{s}\right)=\mathbf{x}_{\text {min }}$
- $\quad \mathbf{x}_{\text {target }}=\mathbf{x}_{\text {beam }}=\mathbf{M} / \sqrt{l}_{\mathbf{s}}$
$y<0$
$x_{\text {target }}$
$x_{\text {target }}=x_{\text {beam }}$
$\boldsymbol{X}_{\text {beam }}$

Drell-Yan kinematics with AFTER

Kinematics: 7 TeV proton beam on fixed

 hydrogen/deuterium target- $V_{\mathrm{s}}=115 \mathrm{GeV}$ and $y_{\text {beam }}=4.8$
- $\quad \tau=\mathbf{X}_{\text {beam }} \mathbf{X}_{\text {target }}=\left(\mathbf{M}^{2} / \mathbf{s}\right)=\mathbf{X}_{\text {min }}$
- $\quad \mathbf{x}_{\text {target }}=\mathbf{x}_{\text {beam }}=\mathbf{M} / \sqrt{l}_{\mathbf{s}}$
$y<0$
$x_{\text {target }}$
$x_{\text {target }}=x_{\text {beam }}$
$\boldsymbol{X}_{\text {beam }}$

Rapidity boost: good condition to access backward rapidity region and large target $\boldsymbol{x}_{\text {target }}$ and low $\boldsymbol{x}_{\mathbf{F}}=\boldsymbol{x}_{\text {beam }}-\boldsymbol{x}_{\text {target }} \rightarrow-\mathbf{1}$: target-rapidity region

Unpolarized target: Boer-Mulders effect

Boer-Mulders effect: correlation between the parton
$\mathbf{k}_{\mathbf{T}}$ and its spin (in an unpolarized nucleon)

Unpolarized target: Boer-Mulders effect

Boer-Mulders effect: correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and its spin (in an unpolarized nucleon)

Double-node structure of transverse-momentum distributions predicted for scalar and pseudoscalar quarkonia \rightarrow give access to the Boer-Mulders TMD pdf for gluons

Boer and Pisano Phys.Rev. D86 (2012) 094007

Unpolarized target: Boer-Mulders effect

Boer-Mulders effect: correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and its spin (in an unpolarized nucleon)

Double-node structure of transverse-momentum distributions predicted for scalar and pseudoscalar quarkonia \rightarrow give access to the Boer-Mulders TMD pdf for gluons

- Experimental probes @ AFTER
- large quarkonium yields expected: scalar and pseudoscalar quarkonia: $\chi_{\mathrm{c} 0}, \chi_{\mathrm{b} 0}, \eta_{\mathrm{c}}, \eta_{\mathrm{b}}$
- PID and modern calorimetry

Boer and Pisano Phys.Rev. D86 (2012) 094007

Longitudinal polarized target: helicity distr.

parton helicity distribution in a longitudinally polarized nucleon:

10^{-2}
10^{-1}

Longitudinal polarized target: helicity distr.

parton helicity distribution in a longitudinally polarized nucleon:

- Experimental probes @ AFTER
- $\mathrm{W}^{+/-} \rightarrow$ individual helicity distribution of quark and anti-quark

10^{-2}
10^{-1}

Transversaly polarized target: Sivers effect

Sivers effect in a transversaly polarized nucleon:
correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and the proton spin

Transversaly polarized target: Sivers effect

Sivers effect in a transversaly polarized nucleon:
correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and the proton spin

- Experimental probes@ AFTER
- Drell-Yan \rightarrow quark Sivers effect
- Large asymmetries predicted in Drell-Yan for the target-rapidity region $\left(x_{F}=x_{\text {beam }}-x_{\text {target }}\right.$ <0) where the k_{T} spin correlation is the largest

Transversaly polarized target: Sivers effect

Sivers effect in a transversaly polarized nucleon: correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and the proton spin

- Experimental probes@ AFTER
- Drell-Yan \rightarrow quark Sivers effect
- Large asymmetries predicted in Drell-Yan for the target-rapidity region ($x_{F}=x_{\text {beam }}-x_{\text {target }}$ <0) where the k_{T} spin correlation is the largest
M. Anselmino Trento 2013

see also T. Liu and B.Q. Ma Eur.Phys.J. C72
(2012) 2037

Transversaly polarized target: Sivers effect

Sivers effect in a transversaly polarized nucleon: correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and the proton spin

Non-zero gluon Sivers function produce a finite SSA for color-single J / ψ

Yuan PRD 78 (2008) 014024

Transversaly polarized target: Sivers effect

Sivers effect in a transversaly polarized nucleon: correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and the proton spin

- Experimental probes @ AFTER
- Quarkonia, Open Charm and Beauty (B and D mesons), isolated γ and γ-jet, $\gamma \gamma \rightarrow$ gluon Sivers effect (unknown and difficult to access with DIS experiments)

Non-zero gluon Sivers function produce a finite SSA for color-single J / ψ

Yuan PRD 78 (2008) 014024

Transversaly polarized target: Sivers effect

Sivers effect in a transversaly polarized nucleon: correlation between the parton $\mathbf{k}_{\mathbf{T}}$ and the proton spin

- Experimental probes @ AFTER
- Quarkonia, Open Charm and Beauty (B and D mesons), isolated γ and γ-jet, $\gamma \gamma \rightarrow$ gluon Sivers effect (unknown and difficult to access with DIS experiments)

Non-zero gluon Sivers function produce a finite SSA for color-single J / ψ

Yuan PRD 78 (2008) 014024

Luminosities in pp @ 115 GeV

- Intensity: $\mathbf{N}_{\text {beam }}=\mathbf{5 . 1 0} \mathbf{0}^{\mathbf{~}}$ protons. $\mathbf{s}^{\mathbf{1}}$
- Beam: 2808 bunches of $1.15 \times 10^{11} \mathrm{p}=3.2 \times 10^{14} \mathrm{p}$
- Bunch: Each bunch passes IP at the rate: $\sim 11 \mathrm{kHz}$
- Instantaneous extraction: IP sees $2808 \times 11000 \sim 3.10^{7}$ bunches passing every second \rightarrow extract ~ 16 protons in each bunch at each pass
- Integrated extraction: Over a 10 h run: extract $\sim 5.6 \%$ of the protons stored in the beam
- Instantaneous Luminosity
$\mathrm{L}=\mathbf{N}_{\text {beam }} \times \mathbf{N}_{\text {Target }}=\mathbf{N}_{\text {beam }} \times\left(\rho \times \operatorname{ex} \mathbf{N}_{\mathrm{A}}\right) / \mathbf{A}$
- $\mathbf{N}_{\text {beam }}=5 \times 10^{8} \mathrm{p}^{+} / \mathrm{s}$
- $\mathbf{e}($ target thickness $)=1 \mathrm{~cm}$
- Integrated luminosity
- 9 months running/year
-1 year $\sim 10^{7}$ s

Target $(1 \mathrm{~cm}$ thick $)$	ρ $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	A	\mathcal{L} $\left(\mu \mathrm{b}^{-1} \mathrm{~s}^{-1}\right)$	$\int_{\left(\mathrm{pb}^{-1} \mathrm{yr}^{-1}\right)}^{\mathcal{L}}$
solid H	0.088	1	26	260
liquid H	0.068	1	20	200
liquid D	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
W	19.1	185	31	310
Pb	11.35	207	16	160

\Rightarrow Large luminosity in pH and $\mathrm{pD} \sim 0.2 / \mathrm{fb} / \mathrm{yr}$ for a 1 cm thick target
\Rightarrow Larger luminosity with 50 cm or 1 m H 2 or $\mathrm{D} 2 \operatorname{target}(1 \mathrm{~m} \leftrightarrow 20 / \mathrm{fb} / \mathrm{yr}=$ LHC in 2012)

Quarkonium yields in pp @ 115 GeV

In pp

\Rightarrow RHIC @ 200 GeV x 100 with 10 cm thick H target
\Rightarrow Comparable to LHCb (PPR nominal) if 1 m H target
\Rightarrow Large statistics for detailed studies on quarkonium production (different quarkonium states, ...)

Inclusive pp cross-sections
$\mathrm{B}_{\mathrm{l}} \mathrm{d} \sigma /\left.\mathrm{dy}\right|_{\mathrm{y}=0} @ 115 \mathrm{GeV}$

$$
\begin{aligned}
& \mathrm{J} / \psi=20 \mathrm{nb} \\
& \mathrm{Y}=40 \mathrm{pb}
\end{aligned}
$$

Target	$\int d t \mathcal{L}$	$\left.\left.\mathcal{B}_{\ell \ell}{ }^{d N_{J / \psi}}\right\|_{\text {dy }}\right\|_{y=0}$	$\left.\mathcal{B}_{e \ell} \frac{d N_{\mathrm{T}}}{d y}\right\|_{y=0}$
10 cm solid H	2.6	5.210^{7}	1.010^{5}
10 cm liquid H	2	4.010^{7}	8.010^{4}
10 cm liquid D	2.4	9.610^{7}	1.910^{5}
1 cm Be	0.62	1.110^{8}	2.210^{5}
1 cm Cu	0.42	5.310^{8}	1.110^{6}
1 cm W	0.31	1.110^{9}	2.310^{6}
1 cm Pb	0.16	6.710^{8}	1.310^{6}
	0.05	3.610^{7}	1.810^{5}
$p p$ low p_{T} LHC (14 TeV)	2	1.410^{9}	7.210^{6}
$p \mathrm{~Pb}$ LHC (8.8 TeV)	10^{-4}	1.010^{7}	7.510^{4}
$p p$ RHIC (200 GeV)	1.210^{-2}	4.810^{5}	1.210^{3}
dAu RHIC (200 GeV)	1.510^{-4}	2.410^{6}	5.910^{3}
$d \mathrm{Au}$ RHIC (62 GeV)	3.810^{-6}	1.210^{4}	1.810^{1}

Luminosity per year in $\mathbf{f b}^{-1}$

Polarizing the hydrogen target

- Instantaneous Luminosity

$\mathrm{L}=\mathbf{N}_{\text {beam }} \times \mathbf{N}_{\text {Target }}=\mathbf{N}_{\text {beam }} \times\left(\rho \times \mathbf{e x} \mathbf{N}_{\mathrm{A}}\right) / \mathbf{A}$

- $\mathbf{N}_{\text {beam }}=5 \times 10^{8} \mathrm{p}^{+} / \mathrm{s}$
- $\mathbf{e}($ target thickness $)=50 \mathrm{~cm}$
$x_{\mathrm{p}}{ }^{\uparrow}$ range corresponds to Drell-Yan measurements

Experiment	particlesenergy (GeV)		\sqrt{s} (GeV)	x_{p}^{\top}	\mathcal{L} $\left(\mathrm{nb}^{-1} \mathrm{~s}^{-1}\right)$
AFTER	$p+p^{\dagger}$	7000	115	$0.01 \div 0.9$	1
COMPASS	$\pi^{ \pm}+p^{\top}$	160	17.4	$0.2 \div 0.3$	2
COMPASS	$\pi^{ \pm}+p^{\dagger}$	160	17.4	~ 0.05	2
(low mass)					
RHIC	$p^{\dagger}+p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\dagger}+p$	50	10	$0.5 \div 0.9$	1000
PANDA	$\bar{p}+p^{\dagger}$	15	5.5	$0.2 \div 0.4$	0.2
(low mass)	$p^{\dagger}+\bar{p}$	collider	14	$0.1 \div 0.9$	0.002
PAX	$p^{\dagger}+p$	collider	20	$0.1 \div 0.8$	0.001
NICA	$p^{\dagger}+p$	250	22	$0.2 \div 0.5$	2
RHIC					
Int.Target 1	$p^{\dagger}+p$	250	22	$0.2 \div 0.5$	60
RHIC Int.Target 2					

\Rightarrow AFTER provides a competitive luminosity to study target spin related measurements \Rightarrow Complementary x_{p} range with other spin physics experiments

Target experimental setup: COMPASS example

+ Specifications
+ Superconducting solenoid : 2.5 T
+16 trim coils
+ Field homogeneity: 10^{-4}
+ Dipole magnet (long. or transverse): 0.5 T
+ Temperature: $\sim 50 \mathrm{mK}$ (frozen)
+ Materials: $\mathrm{NH}_{3},{ }^{6} \mathrm{LiD}$
+ Dilution factor: ~0.4
+ Performances
+ Polarization: >90\%, >50\%
+ Field reversal: 8h, 24h

Space constraints for the polarized targets

Target experimental setup: COMPASS example

NH_{3} material

${ }^{6} \mathrm{LiD}$ material

time relaxation ~ 1000 hours

Conclusion

- LHC proton continuous extraction with bent crystal on a fixed (polarized or not) target offers many spin physics opportunities
- High boost and large luminosities provide access to large and very large parton x measurements for quarks and gluons: QCD laboratory at large x
- Space and time constraints for the polarized targets

Rapidity boost in a fixed target mode

- Very high boost:
- With 7 TeV beam
$\gamma=V_{\mathrm{s}} /\left(2 \mathrm{~m}_{\mathrm{p}}\right)=61.1$ and $\mathbf{y c m s}=4.8$
- With 2.76 TeV beam

$$
\gamma=38.3 \text { and } \mathbf{y C M S}_{\mathbf{C M S}}=4.3
$$

- $\mathrm{y}_{\mathrm{lab}}=\mathrm{yCM}+\mathbf{y}_{\text {CMS }}$
forward region: усм>0
backward region: усм <0
- $\eta=-\ln \tan \theta / 2$ (=y for massless particles)
- With 7 TeV beam

$$
\text { усм }=0 \leftrightarrow \theta \sim 16 \operatorname{mrad}\left(0.9^{\circ}\right)
$$

For a $2 \rightarrow 1$ process (e.g. gg \rightarrow QQbar)

$$
x_{1,2}=\mathbf{M} / \sqrt{ } \mathbf{e}^{ \pm y C M}
$$

усм: QQbar CMS rapidity
M : QQbar mass

- ylab $=4.8 \leftrightarrow$ уCM $=0 \rightarrow x_{1}=x_{2}$
- backward region: усм $<0 \rightarrow x_{1}<x_{2}$
- $y_{\text {lab }}(\mathrm{J} / \Psi) \sim 1.2 \rightarrow x_{2}=1$
- $y_{\text {lab }}(Y) \sim 2.4 \rightarrow x_{2}=1$

Good condition to access large target \mathbf{x}_{2} and low $\mathbf{x}_{\mathrm{F}}=\mathbf{x}_{1}-\mathbf{x}_{2} \rightarrow-1$: target-rapidity region

