Détermination de la section efficace de production de paires de quarks top avec le détecteur ATLAS au LHC

Monitoring du détecteur à pixels

Cécile Lapoire

Centre

de Physique 🔰 des Particules

de Marseille

Centre de Physique des Particules de Marseille Sous la direction de A.Rozanov et L.Vacavant Journées Rencontres Jeunes Chercheurs 1^{er} Décembre 2008

PLAN

 \Box Introduction □ Cadre théorique \Box Intérêts de l'étude de σ_{ttbar} Dispositif expérimental : LHC et ATLAS □ Monitoring du détecteur à pixels Le détecteur □ Monitoring □ Canal ttbar □ Production au LHC Choix du canal de désintégration □ Analyse Conclusion : à faire prochainement

Cadre Théorique

□ Top du modèle standard

□ Très grande masse → temps de vie très petit □ $M(t) = 171.2 \pm 2.1 \text{ GeV/c}^2$ □ $\tau(t) \sim 10^{-25} \text{ s}$

 \Box Rapport de branchement (t \rightarrow Wb) = 0.98

Intérêt d'une mesure de précision de σ_{ttbar} au LHC

1 paire de top produite par seconde (à 14 TeV et à une luminosité de 10³³ cm⁻²s⁻¹) :
 Signal observable dès les premières données
 Bruit de fond dominant à d'autres analyses (Single Top, Higgs (ttH, WH,...), SUSY,...)
 Test de la théorie électrofaible :
 Vérification de l'élément de matrice CKM (Vtb)
 Recherche de nouvelle physique :
 Section efficace supérieure à la valeur attendue
 Existence d'autres mécanismes de production de ttbar
 BR (t→Wb) inférieur à la valeur attendue

□ Nouveaux mécanismes de désintégration : t→H*+b, t→ t

Dispositif expérimental

Le LHC

□ Collisionneur protons-protons

- □ 14 TeV au centre de masse
- □ 27 km de circonférence
- □ Fréquence des collisions : 40MHz
- □ 4 expériences : ALICE, ATLAS, CMS, LHCb
 □ Démarrage : prévu pour juillet 2009

ATLAS (A Toroidal Lhc ApparatuS)

 \Box 42 m de long

Chambres à muons

Détecteur à pixels

CARACTERISTIQUES

Ζ

- □ Situé au plus près du point d'interaction
- □ Contraintes :
 - □ Résistant aux fortes radiations
 - □ Le plus transparent possible aux particules
- \Box 3 couches concentriques
 - □ A 5.05, 8.85 et 12.25 cm de l'axe du faisceau
 - □ Constituées d'échelles (staves) formées de 13 modules
- □ 3 disques de chaque côté (48 modules chacuns)
- 🗆 1744 modules au total

DESCRIPTIF

\Box 80 363 520 de pixels de dimensions 50 (R ϕ) x 400 (z) μm

□ 1 pixel = diode de détection (jonction PN) + électronique complète de traitement associée reliées par une soudure à bille

□ Traces des particules chargées reconstruites très précisement :

□ Très peu de hits par rapport au nombre total de pixels (occupation = 10⁻⁵) : reconnaissance des schémas des traces facilitée

 \Box Granularité très grande (résolution de 8 μ m en R ϕ) : très bonne résolution du paramètre d'impact d₀ (distance d'approche minimale entre la trace et le vertex primaire)

MONITORING

Principe : déceler rapidement un mauvais fonctionnement du détecteur pendant la prise de données en observant des histogrammes judicieusement choisis

□ But : corriger le problème au plus vite pour perdre le moins de données possible

□ Mes activités dans le monitoring :

□ Développement du code (online et offline) assurant la génération des histogrammes

□ Implémentation des contrôles effectués sur ces histogrammes

□ Configuration des softwares de monitoring affichant les histogrammes

SRUCTURE DU MONITORING

\Box Monitoring Online :

- □ Reconstruction d'une partie des événements triggés
- Remplissage, affichage et et tests automatiques des histogrammes de monitoring
- □ Shifter pixel informé en temps réel d'éventuels problèmes

\Box Monitoring Offline :

- □ 10% de reconstruction officielle des données
- □ Histogrammes publiés sur une page web observés par le shifter "data quality"
- □ Si les données sont validées, la reconstruction de tous les événements débute

MONITORING

Exemple de plot utile pour le monitoring du détecteur à pixels
 Nombre de coups par modules :

*Optoboard : système transformant le signal électrique en signal optique situé au niveau du détecteur à pixels – 1 pour chaque demi-stave

**Boucle de refroidissement : 1 pour 2 staves

Canal ttbar

a cell de los cellos de los del del del del del del del del del de

Production de paires ttbar au LHC

 $\mathbf{\sigma}_{\mathrm{ttbar}}$ attendue à 14 TeV ~833 pb

Désintégration du top

□ t→Wb dans ~100% des cas

 $\Box \tau(t)$ très petit : temps de désintégration < temps d'hadronisation^{*} \rightarrow top observable à l'état libre grâce à ses produits de désintégration :

□ b :

□ sous forme de jets**

\square W :

- \square W leptonique \rightarrow $|v \sim 30\%$ des cas
- \square W hadronique \rightarrow qq' \sim 70% des cas

*hadronisation : processus de formation de hadrons à partir de quarks et gluons (ne pouvant exister individuellement à cause de leur charge de couleur) par la combinaison avec des quarks et des antiquarks créés spontanément à partir du vide

**jet : ensemble de hadrons et d'autres particules produites par l'hadronisation d'un quark ou d'un gluon

Choix du canal

□ Selon le mode de désintégration des 2 W : 3 canaux de désintegration possibles :

Analyse : Stratégie

□ Méthode pour la détermination de la section efficace

□ "cut and count"

$$= \text{"cut and count"}$$

$$= \text{Simple}^* \text{ et efficace}$$

$$\sigma = \frac{N_{mesure} \quad N_{ba}}{\varepsilon L}$$

*Simple comparée à la méthode du likelihood dans la phase du commissioning - nécessite de recalibrer le Monte-Carlo à partir des données

 $\boldsymbol{\varepsilon}$: efficacite totale (prend en compte l'acceptance géometrique, l'efficacité de trigger et l'efficacité de sélection des événements). L : luminosité integrée

□ Mon analyse :

- □ Sur le Monte-Carlo 10 TeV (le LHC tournera à 10 TeV pendant 1 an)
- \Box Evénements semi-leptoniques, $W \rightarrow \tau v$ exclus
- □ Avec btagging
- \Box Bruits de fond : Wbb, Wjj, Single top (t \rightarrow Wb), Z \rightarrow || + jets

Analyse : Btagging

 Propriétés des hadrons (mésons+baryons) B :
 Volent dans le détecteur avant de se désintegrer (E(B)~50GeV, d=5mm)

□ Présence d'un vertex secondaire

□ Grand paramètre d'impact des traces (d_0)

Distance de vol mesurable grâce à la très bonne résolution

du détecteur à pixels

Toutefois 2 problèmes rendent l'etiquetage difficile :

□ Grande densité de particules

🗆 Quarks c

□ Algorithmes de btagging :

Ceux qui requièrent un lot pur de jets b ne seront pas utilisables avec les premières données

□ Utilisation de JetProb

Analyse : Btagging : JetProb

□ JetProb :

- Basé sur la distribution de S_{do} de toutes les traces (provenant des jets légers et b indifféremment)
 Distribution gaussienne (sauf les queues) des jets b et légers pour d₀ < 0
 d₀ symétrique pour les légers larges distributions à grand d₀ pour les b
- Retourne un poids évaluant la probabilité qu'un jet donné soit léger :

Analyse : Présélection

□ Coupures :

- □ électron (muon) trigger EF_e22i_tight (EF_mu20)
- □ 1 seul électron (muon) passant les coupures dans les événements électron (muon)
- \Box Energie transverse manquante (MET) > 20 GeV/c²
- □ 4 jets avec Pt > 30 GeV/c
- □ 3 jets avec Pt > 40 GeV/c
- □ 3 jets avec 150 GeV/ c^2 < masse invariante < 190 GeV/ c^2 (Fenêtre de masse du top)
- □ au moins 1 jet etiqueté comme b avec le tagger jet prob
- □ au moins 2 jets etiquetés comme b avec le tagger jet prob

□ Nombre d'événements passant les coupures indépendamment les uns des autres (%) :

	total	trigger	lepton	MET	Jets1	Jets2	МТор	btag1	btag2
Electron	13152	6995	8041	12039	5924	7716	2851	10522	5172
		(53)	(61)	(91,5)	(45)	(59)	(22)	(80)	(39)
Muon	13016	7955	9594	11910	5318	7131	2876	10290	4969
		(61)	(74)	(91,5)	(41)	(55)	(22)	(79)	(38)

Analyse : Efficacite de Présélection (Electrons)

- \Box $|\eta| > 2,5$ et 1,37 \leq $|\eta| \leq$ 1,52 rejetés
- □ pt > 20 GeV/c
- □ Isem : coupures d'identification basées sur les caracteristiques de la gerbe électromagnétique (discrimination électrons – pions)
- □ isolation : énergie dans un cône de deltaR = 0.2 < 6 GeV

Analyse : Efficacite de Présélection (Muons)

□ |**η**| < 2,5

□ pt > 20 GeV/c

□ isolation : énergie dans un cône de deltaR = 0.2 < 6 GeV

Analyse : Résolution des jets

Analyse : Reconstruction de l'événement

A partir des produits de désintégrations détectés, on doit reconstruire les 2 tops et les 2 W
 Top hadronique :

□ Sans btagging

□ 3 jets de plus grands pt pour le top OV 3 jets donnant une masse invariante totale la plus proche du top (artificiel)

□ Avec btagging

 2 jets dont la masse invariante est la plus proche de celle du W et le jet b donnant une masse invariante totale la plus proche de celle du top

Analyse : Reconstruction de l'événement

□ Moyenne du fit gaussien (fenêtre de masse : 140 – 200 GeV/c²) :

- **).** 3 jets de plus grands pt : $166.5 \text{ GeV}/c^2$
- *****. W + btag : 169.5 GeV/c²
- *****. 3 jets avec la masse la plus proche : $173.7 \text{ GeV}/c^2$

A faire prochainement

□ Monitoring :

Utilisation d'une interface graphique permettant de visualiser les parties posant problème du détecteur à pixels

□ Ttbar :

□ Reconstruction de tous les objets de l'événement

□ Utilisation du bruit de fond

□ Utilisation des algorithmes de btagging plus sophistiqués (IP3D+SV1)

Back Up

Analyse : Btagging : JetProb

★ JetProb :

* Se base sur la distribution de la significance S_d du paramètre d'impact de toutes les traces (provenant des jets legers et b indifferemment) – partie negative de la distribution

- * Distribution gaussienne (sauf les queues) des jets b et legers pour d0 < 0
- * dO symetrique pour les legers cas seulement du pux effets de resolution gaussiens $P(jet) = \prod \frac{i}{j!} \prod^{i} ou \prod f(s) dS$ light and b jets have a quite similar gaussian distribution (except for the tail) of dO when

