

Study of the performances of the ALICE

muon spectrometer

Blanc Aurélien, December 2008

PhD description

- "Study of the performances of the ALICE muon spectrometer"
 - instrumentation/detection.
- Master "Physique Pour l'Instrumentation", UJF Grenoble
- Bourse BDI
 - Cofinancing CNRS(IN2P3)/"Région Auvergne"
 - PhD defense in 2010
 - Detector commissioning with cosmic events.
 - Timing optimization with "beam-gas":
 - → Validation of optimization criteria with simulations
 - ➡ Implementation in the monitoring software
 - First data analysis with p-p collisions at 14 TeV.

ALICE muon spectrometer

Tracking:

- Position resolution < 100 µm (bending plane)
 - $\rightarrow \Delta M < 100 \text{ MeV/c}^2 @ 10 \text{ GeV/c}^2$
- •1.1 M read-out channels

Trigger:

See next slides

The deviation δY2 between the 2 trigger stations is linked to the muon Pt. The measurement of δY2 is used to perform 2 Pt cuts: _low Pt cut: ~1GeV/c optimized for J/ψ physic. _high Pt cut: ~2GeV/c optimized for Υ physic.

Muon trigger system (2)

Blanc Aurélien, LPC Clermont-Ferrand, December 2008

Muon trigger system (3)

Collaboration between:
Collaboration between:
INFN – Torino
LPC – Clermont-Ferrand
Subatech – Nantes

End of installation: December 2007

Blanc Aurélien, LPC Clermont-Ferrand, December 2008

- Event display
- Trigger rate vs High Voltage
- Trigger rate vs Local board

Event display

Trigger rate vs HV

RPC efficiency increases with High Voltage in this HV range => increase of the trigger rate

Trigger rate vs Local board

Trigger rate vs localBoard (Hz)

First injection beam through ALICE, August 10th, 2008

- August 10th, 2008, injection test
- Local trigger level
- Global trigger level

- 1 bunch of a few ns each 48s with 1/20 of the LHC nominal luminosity (about 5.10¹⁰ p/bunch)
- Run in standalone mode

~2 hours of data

Recording frequency : 1 event/s Software sequences for scaler read-out

Number of Global and Local positive trigger decisions during 1 second.

Local trigger level (1)

Local trigger level (2)

Percentage of positive Local trigger decisions per Local board for BACKGROUND events

Percentage of positive Local trigger decisions per Local board for BUNCH events

0

-200

-100

200

X (cm)

100

Global trigger multiplicity

High multiplicity background

- All detector strips fired during injection (not shown) -> thousands (probably more) of particles.
- Spread on a few BC cycles.

9 "beam screens", Ti 15µm, that take "pictures" of the beam to verify steering in the Ti2 injection line.

→ 1-2 particle/cm^2 in ALICE

Conclusion

- During the last cosmic run, Muon Trigger was running almost perfectly and was very stable, concerning:
 - Detection functions
 - Trigger functions
 - Readout functions
- Muon Trigger was also operated during the first injection beam through ALICE
 - a very large background of thousands (probably more) of particles was measured at each injection bunch !
- Ready for physics
 - Timing optimization with "beam-gas" events
 - Wait for first 900 GeV p-p collisions