L'expérience "LPCTrap" : Mesure du paramètre de corrélation angulaire β-v dans la désintégration de l'⁶He utilisant un piège de Paul

Philippe Velten

Laboratoire de Physique Corpusculaire (LPC) CNRS-ENSI Caen Université de Caen, Basse-Normandie, France

Modèle standard

Interaction faible : $X \longrightarrow Y + \beta + \nu_e$

théoriquement l'interaction faible le plus général peut contenir tout les termes invariants de Lorentz : : *vecteur (V), axial (A), scalaire (S), tenseur (T), pseudo-scalaire (P)*

$$\mathcal{H}(C_v, C_A, C_S, C_T, C_P)$$

Les expériences ont conduit à la **structure en V-A** : les termes vecteur and axial sont majoritaires

Limitations : observables expérimentales α (C_i)²

des expériences de précision de désintégration β sont toujours nécessaires Observables intéressantes en physique nucléaire à basse énergie :

Motivation

Distribution de désintégration β permise :

$$N(E_{e},\Omega_{ev})dE_{e}d\Omega_{ev} = CF(Z,E_{e})N_{o}(E_{e})\left(1 + b\frac{m_{e}}{E_{e}} + a\frac{p_{e}.p_{v}}{E_{e}.E_{v}}cos\theta\right)dE_{e}d\Omega_{ev}$$

J.D. Jackson, PR106(1957) & NP4(1957)

<u>corrélation angulaire β – υ :</u>

a (
$$C_V$$
, C_S , C_A , C_T , M_F , M_{GT})

$$\mathbf{a} = \frac{[|C_V|^2 + |C'_V|^2 - |C_S|^2 - |C'_S|^2]|M_F|^2 + \frac{1}{3}[|C_T|^2 + |C'_T|^2 - |C_A|^2 - |C'_A|^2]|M_{GT}|^2}{[|C_V|^2 + |C'_V|^2 + |C_S|^2 + |C'_S|^2]|M_F|^2 + [|C_T|^2 + |C_T|^2 + |C_A|^2 + |C_A|^2]|M_{GT}|^2}$$

Distribution de désintégration β permise :

$$N(E_{e},\Omega_{ev})dE_{e}d\Omega_{ev} = CF(Z,E_{e})N_{o}(E_{e})\left(1 + b\frac{m_{e}}{E_{e}} + a\frac{p_{e}.p_{v}}{E_{e}.E_{v}}cos\theta\right)dE_{e}d\Omega_{ev}$$

J.D. Jackson, PR106(1957) & NP4(1957)

corrélation angulaire β – υ :

$$\square \longrightarrow a (C_V, C_S, X_V, X_F, X_G)$$

Désintégration Fermi pure

$$(\Delta J=0, \Delta P=+) \begin{cases} \text{Si } C_{S}=0 & \text{II} & \text{a}_{F} = 1 \\ \text{si } C_{V}=0 & \text{II} & \text{a}_{F} = -1 \end{cases} \text{ (structure V-A)}$$

Distribution de désintégration β permise :

$$N(E_{e},\Omega_{ev})dE_{e}d\Omega_{ev} = CF(Z,E_{e})N_{o}(E_{e})\left(1 + b\frac{m_{e}}{E_{e}} + a\frac{p_{e}.p_{v}}{E_{e}.E_{v}}cos\theta\right)dE_{e}d\Omega_{ev}$$

J.D. Jackson, PR106(1957) & NP4(1957)

corrélation angulaire $\beta - \upsilon$:

$$\square \longrightarrow a (X, X, C_A, C_T, M_E, M_G)$$

Désintégration Gamow Teller pure

$$(\Delta J=\pm 1, \Delta P=+) \qquad \begin{cases} \text{si } C_T=0 & \text{log} & \textbf{a}_{\text{GT}}=-1/3 \text{ (structure V-A)} \\ \text{si } C_A=0 & \text{log} & \textbf{a}_{\text{GT}}=1/3 \end{cases}$$

- Énergie de l'ion de recul "importante" : $T_{r max} = 1.4 \text{ keV}$
- Taux de production "élevé" : 10⁸ ions/s (SPIRAL)

Limite actuelle

 $a_{GT} = -0.3343 \pm 0.0030 (1\sigma)$

C.H. Johnson, PR 132 (1963) 1149

Méthode : Analyse de spectre de l'énergie de recul,

Objectif du LPCTrap

Mesurer
$$a_{GT}$$
 avec $(\Delta a/a)_{stat} \le 0.5\%$

Statistiques nécessaires : $\geq 10^6$ évènements de désintégration

<u>Méthode</u> : mesure en **coincidence** β-ion de recul depuis un **piège à ions**

Comment mesurer une corrélation angulaire ?

p_r(θ) grâce à la cinématique de désintégration

corrélation angulaire déduite du recul nucléaire

Problèmes expérimentaux :

impulsion de recul mesurable

Problèmes expérimentaux :

impulsion de recul mesurable

environnement sans matière

faible énergie de recul (~keV)

spectre temps de vol

$$\begin{split} t_{start} &= \beta \text{ atteint son détecteur} \\ t_{stop} &= l'\text{ion atteint son détecteur} \\ &\rightarrow \text{ ToF}_{ion} = t_{stop} - t_{start} \ (= M_{ion}.d/p_{ion}) \end{split}$$

Problèmes expérimentaux :

réduire le bruit de fond

Problèmes expérimentaux :

réduire le bruit de fond

Technique de piégeage : le piège de Paul

Équation de Poisson :

$$\Delta V = \frac{\partial V^2}{\partial x^2} + \frac{\partial V^2}{\partial y^2} + \frac{\partial V^2}{\partial z^2} = 0$$

Solution pour un potentiel quadratique : $V=A(x^2+y^2-2z^2)$

-> champs oscillant nécessaire pour piéger

Technique de piégeage : le piège de Paul

Équation de Poisson :

$$\Delta V = \frac{\partial V^2}{\partial x^2} + \frac{\partial V^2}{\partial y^2} + \frac{\partial V^2}{\partial z^2} = 0$$

Solution pour un potentiel quadratique : $V=A(x^2+y^2-2z^2)$

-> champs oscillant nécessaire pour piéger

Technique de piégeage : le piège de Paul

équations de Mathieu :

paramètres de Mathieu :

 $\begin{array}{l} \boldsymbol{a}_{\boldsymbol{\xi}}(\boldsymbol{m},\boldsymbol{q},\boldsymbol{\omega},\boldsymbol{U}_{0}) \\ \boldsymbol{q}_{\boldsymbol{\xi}}(\boldsymbol{m},\boldsymbol{q},\boldsymbol{\omega},\boldsymbol{V}_{0}) \end{array}$

Apparatus

Le piège de Paul transparent

P. Delahaye, Thèse (2002)

Paramètres typiques de fonctionnement pour l'6He :

 $f \simeq 1.8 \text{ Mhz}$ $V_0 = 100 \text{V}$

<u>Performances :</u> capacité > 10^5 ions temps de vie ~ $T_{1/2}$ (⁶He)

A. Mery, Thèse (2007)

Transparent Paul trap

rate $\sim 10^8$ ions/s

Résultats importants

> 2005 : expérience préliminaire au GANIL avec de l'6He+

- preuve de principe
- première observation mondiale de coincidences β -recul depuis un piège à ions

Résultats importants

Résultats

- 2006 : Première prise de données (1 semaine)
 - environ 10⁵ coincidences [($\Delta a/a$)_{stat} ~ 2 %]
 - efficacité globale du LPCTrap ~ 5.10⁻³ % ($t_{duty} = 100 \text{ ms}$)
 - principaux effets systématiques identifiés
 - bruit de fond imagerie du nuage piégé
 - positions et réponses des détecteurs, ...

Commentaires additionnels

Résultats

> 2006 : Première prise de données (1 semaine)

Octobre 2008 : Deuxième prise de données (1 semaine)

Conditions d'expériences idéales :

- stabilité et intensité du faisceau SPIRAL : ~1,7.108 6He/s
- transmission optimale de l'installation

 semaine de données -> près de 4.10⁶ coincidences bruts (après nettoyage ~50% de réduction)
 2 Millions de désintégrations β mesurées

Analyse des données en cours

En cours

simulation complète **GEANT4** de l'environnement du piège

Objectifs : estimation précise des effets systématiques

Objectifs : estimation précise des effets systématiques

 position et orientation des détecteurs

 $(1 \text{ mm} \leftrightarrow 5 \text{ ns} @ 1.4 \text{ keV})$

En cours

Objectifs : estimation précise des effets systématiques

 position et orientation des détecteurs

 $(1 \text{ mm} \leftrightarrow 5 \text{ ns} @ 1.4 \text{ keV})$

En cours

<u>Objectifs :</u> estimation précise des effets systématiques

• diffusion $\boldsymbol{\beta}$

En cours

En cours

simulation complète **GEANT4** de l'environnement du piège

Objectifs : estimation précise des effets systématiques

- trajectoire de l'ion de recul dans le champ RF
- sources de fausses coincidences :
 - implantation des ions sur les détecteurs
 - > présence de gaz résiduel He
- β shake-off

•

Objectifs : estimation précise des effets systématiques

En cours

• nuage d'ions réaliste

-> distribution en position et vitesse (=température)

fonctionnement "plug & play" de l'installation

→ LPCTrap disponible pour de futures expériences de précision

analyse et simulation en cours....

 confidence relative sur l'obtention d'une mesure de a avec la précision souhaitée en fin de thèse

Gilles Ban Dominique Durand Florian Duval Xavier Fléchard Etienne Liénard François Mauger Oscar Naviliat-Cuncic Philippe Velten

Ex-postdoc/students Mustapha Herbane Daniel Rodriguez Guitaume Darius Pierre Delahaye Alain Mery

<u>GANIL:</u>

Jean-Charles Thomas

> 2007-2008 : Optimizations & improvements

- fine tuning of the whole setup with ⁶Li¹⁺ ions (*F. Duval, NIM B (2008)*)
- addition of a vacuum impedance to decrease the background
- measurement of the ion cloud size (*D. Rodríguez, Hyp. Int. 174 (2007)*)
- precise alignement of the detectors (1/10 mm)
- addition of a second recoil detector at 90°
- measurement of the plastic scintillator response function with e-spectrometer (CENG, Bordeaux)

	2006 run	2007/2008 test*	2008 test run
٤ _{RFQ}	3.5 %	3.3 %	1.25 %
E transfert	2 %	30 %	20 %
٤ _{trap}	9 %	20 %	20 %
E global	0.0065 %	0.2 %	0.05 %

LPCTrap overall performance

* 6Li @ 1 keV

Resolution

- \succ temporal: σ_{t} < 200 ps
- > spatial: $\sigma_x, \sigma_y \sim 110 \ \mu m$

E. Liénard, accepted in NIM A

μCPs efficiency

Apparatus

The β telescope

PSD silicon Detector

60 x 60 mm x 300 µm
1mm spatial resolution
~10 keV ∆E resolution

Plastic scintillator

σ_T 500 ps
 σ_E 10 % at 1 MeV

Neutrinos being extremely difficult to detect, how to measure angular correlation ?

Measurement

$p_r(\theta)$ through decay kinematics

angular correlation inferred from nuclear recoil

Overall ⁶He performance of LPCTrap

	2005	2006	2007/2008*	2008
l _{beam} (ions/s)	3.10 ⁷	1-2.10 ⁸		
t _{cycle (ms)}	100	100	20	200
٤ _{RFQ}		3.5 %	3.3 %	
ε _{pd1}	20 % ?	10 %	75 %	
E transfert		20 %	40 %	
٤ trap	0.5 %	9 %	20 %	
٤ _{total}		0.0065 %	0.2 %	0.05 %
total coinc.	150	105	na	7000
measurement time (h)	6	55	na	2
coinc./s	0.007	0.5	4	1

* 6Li @ 1 keV

Outlook

¹⁹Ne, ³⁵Ar : other candidates available @ LIRAT

see arXiv:0809.0994 in http://arxiv.org/ : "Determination of |V_{ud}| from nuclear mirror transitions" by O. Naviliat & N. Severijns

Outlook

•He : measurement of e- shake off (ionization of daughter nucleus)

-> Theoretical estimation ~ 2 %

-> Adding an acceleration voltage + a longer free field region

Outlook

Li²⁺ and Li³⁺ identification by time of flight

Tests of the standard electroweak model in beta decay

N. Severijns, M. Beck and O. Naviliat-Cuncic

Reviews of Modern Physics (2006)

International context

isotope	method	result/goal	Publi	group/location
³² Ar (F)	"Doppler"	$a_{F} = 0.9989(52)(39)$ (fully re-analysed)	1999	CENPA / Isolde
^{38m} K (F)	MOT-coinc	$a_F = 0.9981(30)(37)$	2005	SFU / Triumf
²¹ Na (mixed)	MOT-coinc	a _m = 0.5243(92) (3.6 <mark>o</mark> from SM)	2004	Berkeley / LBNL
³⁵ Ar (mixed-F)	Penning-recoil	$\Delta a_{\rm F}/a_{\rm F} = 5 \ 10^{-3}$	/	Leuven / Isolde
⁶ He (GT)	Paul-coinc	$\Delta a_{GT}/a_{GT} = 5 \ 10^{-3}$	/	LPC / GANIL

The RFQ Cooler - buncher

Parameters

RF : f : 0.8 to 2 MHzV₀ : 100 to 250 Volts Pressure : some mTorr

G. Ban, NIM A (2004)

 He^+/H_2

Cooling time He⁺ > 0.5 ms
 Lifetime He⁺ ~ 20 ms

Time width of the bunches

FWHM ~ 100 ns, 3 eV @ 1 keV Longitudinal emittance 0.3 eV µs

From the RFQ to the Paul trap

Experimental time of flight

Simulated time of flight

Time of flight (μ s)

Cooled ⁶Li⁺ ions trapped for several 10 ms
 Efficiency ~20%

Evidence of cooling with residual H₂

Time base : 200 ns/div.

trap

Life Time: 200 ms
Capacity: up to 20000 ions

&

- Trapping efficiency: up to 20 %
- Evidence for cooling

In excellent agreement with simulations

Fulfills requirements for ⁶He experiment