Determining the WIMP mass using the complementarity between direct and indirect searches and the ILC

Andreas Goudelis

Journées Jeunes Chercheurs, 30/11 - 6/12, St Flour, France

Based on N.Bernal, A.G., Y.Mambrini, C.Muñoz, Preliminary version: arXiv:0804.1976 [hep-ph] Modified version submitted to JCAP

Laboratoire de Physique Théorique - Orsay

Outline

Introduction

- Why Dark Matter
- WIMP Dark Matter

2 DM Detection

- Detection Methods
- Direct Detection
- Indirect Detection

Oirect vs Indirect Detection

Dark Matter at Colliders

- The Method
- Radiative WIMP Production Rate
- ILC: Results

Why Dark Matter?

Galactic Rotation Curves

Gravitational Lensing

Why Dark Matter

And also:

- Primordial Nucleosynthesis
- Large Scale Structure
- Cosmic Microwave Background

At the end of the Day, for $$\Lambda \text{CDM}$$

73% DAX ENERGY 23% DAX NATER 23% DAX NATER 3.0% INTRODUCTO DA

Normally, for $r > r_{vis}$ one would expect

$$v(r) = \sqrt{\frac{GM(r)}{r}}$$

instead

$$v(r) \approx \text{const}$$

Light bends differently than predicted from GR, if only luminous matter is taken into account.

Why Dark Matter WIMP Dark Matter

WIMP DM - Relic Density

Principle of "Thermal Relics": (The simplest scenario!)

- Begin from a state of thermodynamical equilibrium.
- The universe expands \implies its temperature falls. SM particles no longer energetic enough to produce $\chi\chi$ pairs
- $\implies \chi$'s density falls asymptotically.

A gross estimation of a particle's relic density can be provided by

$$\Omega_{\chi} h^2 pprox rac{3 imes 10^{-27} ext{cm}^3 ext{s}^{-1}}{\langle \sigma ext{v}
angle}$$

Why Dark Matter WIMP Dark Matter

Weakly Interacting Massive Particles

So:

$$\Omega_\chi \sim rac{1}{\langle \sigma v
angle} \sim rac{m_\chi^2}{g_\chi^4}$$

Substitute

 $(m_{\chi}, g_{\chi}) \sim (m_{\mathsf{weak}}, g_{\mathsf{weak}}) \Longrightarrow \mathsf{Correct relic density}!!!$

This observation gives rise to the WIMP hypothesis.

A number of BSM theories provide very good candidates:

- SUSY: Neutralino, gravitino, right-handed sneutrino
- KKDM: Lightest Kaluza-Klein excitation (UED models)
- Little Higgs Models

A common feature: Impose some kind of discrete symmetry in the Lagrangian to keep the lightest BSM-sector particle stable.

(But also avoid fast proton decay!)

Detection Methods Direct Detection Indirect Detection

DM Detection Methods

Direct Detection

Dark Matter is detected through its collisions with target nuclei of a (typically large) ground-based detector. Indirect Detection

DM annihilation into SM particles in the galactic halo. The main detected particles: γ -rays, e^+ , antiprotons as primary or secondary products of WIMP annihilations.

Detection Methods Direct Detection Indirect Detection

Direct Detection: The event rate

$$\frac{dN}{dE_r} = \frac{\sigma_{\chi-N} \cdot \rho_0}{2 M_r^2 m_{\chi}} F(E_r)^2 \int_{v_{\min}(E_r)}^{v_{esc}} \frac{f(v)}{v} dv$$

Where:

- N: Number of scatterings (s⁻¹kg⁻¹)
- Er: Nuclear recoil energy (~few keV)
- m_{χ} : WIMP mass
- $M_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$: WIMP Nucleus Reduced Mass
- $\sigma_{\chi-N}$: WIMP-Nucleus cross-section (Spin-independent coupling)
- ρ_0 : Local WIMP density (0.3 GeV cm⁻³)
- f(v): WIMP local velocity distribution (Maxwell-Boltzmann)
- F: Nuclear form factor (Woods-Saxon)

\Rightarrow Our choice: The XENON 100kg experiment.

Detection Methods Direct Detection Indirect Detection

Direct Detection: Mass Discrimination

 \Rightarrow Better discrimination capacity for small masses

Here we ignore backgrounds/theoretical uncertainties. For more details, see discussion!

Detection Methods Direct Detection Indirect Detection

Indirect Detection: The γ -ray flux

Φ

$$\gamma(E_{\gamma}) = 0.94 \cdot 10^{-13} \text{cm}^{-2} \text{sec}^{-1} \text{GeV}^{-1} \text{sr}^{-1} \sum_{i} Br_{i} \frac{dN_{\gamma}^{\prime}}{dE_{\gamma}}$$
$$\times \left(\frac{\langle \sigma \mathbf{v} \rangle}{10^{-29} \text{cm}^{3} \text{sec}^{-1}}\right) \left(\frac{100 \text{GeV}}{m_{\chi}}\right)^{2} \overline{J}(\Delta \Omega) \Delta \Omega$$

Where:

- Bri: Branching Ratio of annihilation into i-th SM particle
- $dN_{\gamma}^{i}/dE_{\gamma}$: Functions describing SM particles' decays into γ -rays (PYTHIA + fit)
- $\langle \sigma v \rangle$: Total WIMP self-annihilation cross-section ($\approx 3 \cdot 10^{-26} \text{cm}^3 \text{sec}^{-1}$)
- \overline{J} : Astrophysical factor: Depends on DM distribution.

	a (kpc)	α	β	γ	$\overline{J}(4 \cdot 10^{-3} \mathrm{sr})$
NFW	20	1	3	1	$5.859 \cdot 10^{2}$
NFW _c	20	0.8	2.7	1.45	$3.254 \cdot 10^4$
Moore et al.	28	1.5	3	1.5	$2.574 \cdot 10^4$
Moore _c	28	0.8	2.7	1.65	$3.075 \cdot 10^5$

\Rightarrow Our choice: The GLAST experiment

Detection Methods Direct Detection Indirect Detection

Indirect Detection: Mass Discrimination

• Again, better resolution for smaller masses (due to strong differences in the spectrum form in the [1,300]GeV region!).

- Strong dependence on the halo profile.
- No clumpiness included (factor of $\sim 2-10$)

Interesting theoretical/experimental uncertainties, also left for discussion!

Direct vs Indirect Detection

Example for $m_{\chi} = 50 \text{GeV}$

- $\bullet\,$ Comparable precision $\Rightarrow\,$ Experiments complementary for low/intermediate masses.
- For higher masses, uncertainties become more important.
- Complementarity more obvious for not too optimistic astrophysical considerations and $\sigma_{\chi-\rho}$ cross-sections.

The Method Radiative WIMP Production Rate ILC: Results

ILC: The Method

The General Idea: Birkedal, Matchev, Perelstein, arXiv:hep-ph/0403004

The Method Radiative WIMP Production Rate ILC: Results

ILC: Radiative WIMP Production Rate

$$\frac{d\sigma(e^+e^- \to 2\chi + \gamma)}{dxd\cos\theta} \approx \frac{\alpha\kappa_e\sigma_{an}}{16\pi} \frac{1 + (1-x)^2}{x} \frac{1}{\sin^2\theta} 2^{2J_0}$$
$$\times (2S_{\chi} + 1)^2 \left(1 - \frac{4m_{\chi}^2}{(1-x)s}\right)^{1/2 + J_0}$$

Where:

•
$$x = 2E_{\gamma}/\sqrt{s}$$

- θ : Photon emission angle
- σ_{an} : Total annihilation cross-section (WMAP) (\sim 7pb)
- J₀: Dominant (s- or t-) annihilation channel
- S_{χ} : WIMP's spin

•
$$\kappa_e = \sigma_e^{(J_0)} / \sigma_{an}$$
: Annihilation fraction into e^+e^- pairs.

The Method Radiative WIMP Production Rate ILC: Results

ILC: Mass Discrimination

WIMP mass - annihilation fraction discrimination capacity

Relative error in WIMP's mass discrimination

- Discrimination capacity peaks significantly for $m_{\chi} = 175 \text{GeV}$ (optimal combination of uncut spectrum phase space).
- Significant improvement in mass resolution for polarized beams.

DM Experiments/ILC complementarity

An example at 95% CL:

- $m_{\chi} = 100 {
 m GeV}$
- 3 years of exposure,

•
$$\sigma_{\chi-p}=10^{-8}$$
 pb

- NFW profile and a
- 500 GeV unpolarized linear collider with an integrated luminosity of $500 {\rm fb}^{-1}$

m_{χ}	XENON	GLAST	ILC
50 GeV	$-5/+7 { m GeV}$	± 10 GeV	—
100 GeV	-19/+75 GeV	-33/+39 GeV	$-40/+20 { m GeV}$
175 GeV	-65/ GeV	-125 GeV	-20/+15 GeV
500 GeV	_	_	_

Summarizing...

- We presented a simple way to exploit simultaneously different kinds of experiments to extract **model-independent** information on WIMP Dark Matter.
- For quite reasonable (i.e. not too optimistic) considerations on the WIMP-nucleus scattering cross-section and the DM halo profile we saw that different kinds of experiments can act highly complementary:
 - \rightarrow The precision is comparable.
 - \rightarrow Possibility to cover different regions in the parameter space.

- ... in preparation:
 - Can PAMELA/ATIC observations come in terms with SUSY models?
 - And on a totally different subject: Z' at the LHC

Merci !!!

Andreas Goudelis Determining the WIMP mass using the complementarity between direct and in

... to use in emergency ...

Andreas Goudelis Determining the WIMP mass using the complementarity between direct and in

Halo Profiles

The most usual parametrization:

$$\rho(r) = \frac{\rho_0 [1 + (R_0/a)^{\alpha}]^{(\beta - \gamma)/\alpha}}{(r/R_0)^{\gamma} [1 + (r/a)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$

Some well motivated profiles

Halo Profiles: Influence on observations

More fun with γ !!!

- Among the most important uncertainties: Flux can be enhanced/suppressed by orders of magnitude!
- Estimations based on N-body simulations. Open question: role of baryons?
- Observations seem to favour rather small γ values ($\gamma \leq 1$)

Spectral Functions

PYTHIA result fit performed through functions of the form:

$$\frac{dN_{\gamma}^{i}}{dx} = \exp[F_{i}(\ln(x))]$$

with $x = E_{\gamma}/m_{\chi}$ and F being 7th order polynomial functions.

• The τ spectrum has a characteristic hard form, other leptons have zero contribution.

Some Points on the ILC Treatment

• The detailed balancing equation:

$$\frac{\sigma(\chi + \chi \to X_i + \bar{X}_i)}{\sigma(X_i + \bar{X}_i \to \chi + \chi)} = 2\frac{v_X^2 (2S_X + 1)^2}{v_\chi^2 (2S_\chi + 1)^2}$$

We can expand the total thermally averaged CS:

$$\sigma_i \mathbf{v} = \sum_{J=0}^{\infty} \sigma_i^{(J)} \mathbf{v}^{2J} \stackrel{\mathbf{v} \ll c}{\Longrightarrow} \sigma_{an} = \sum_i \sigma_i^{(J_0)}$$

For soft/collinear photons:

$$rac{d\sigma(e^+e^- o 2\chi + \gamma)}{dxd\cos heta} pprox \mathcal{F}(x,\cos heta) ilde{\sigma}(e^+e^- o 2\chi)$$

Form Factor and Stuff...

• Woods-Saxon form factor:

$$F(E_r) = \frac{3j_1(qR_1)}{qR_1}e^{-(qs)^2}$$

• WIMP-Nucleus and WIMP-proton CS:

$$\sigma_{\chi-N} = \sigma_{\chi-p} (Am_r/M_r)^2$$

where

$$M_r = \frac{m_{\chi} m_p}{m_{\chi} + m_p}$$
$$m_r = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$$

Signal Examples

Direct Detection: Background Uncertainties

Constant bkg equal to maximal signal value

Exponential bkg that mimics signal

- Good knowledge of backgrounds is essential!!!
- Experiments claim to be practically background-free...

Direct Detection: Uncertainties in velocity distribution

The general form:

$$f(v_{\chi}) d^{3}v_{\chi} = \frac{1}{(v_{\chi}^{0})^{3}\pi^{3/2}} e^{-(v_{\chi}/v_{\chi}^{0})^{2}} d^{3}v_{\chi}$$

Inirect Detection: Background Uncertainties

The main background uncertainty at low energies: EGRET

- Uncertainties in the spectrum overall normalisation
- Uncertainties in the power-law spectral index

Varying the normalisation

Varying the spectral index

!!! Uncertainties important: At low energies, maximal signal statistics **!!!**

Direct Detection: The XENON experiment

- Situated at the Gran Sasso NL, Italy
- Currently: 15kg of liquid Xenon. Goal: 1T. Simultaneous measurement of scintillation and ionization.

Indirect Detection: The GLAST experiment

Generalities...

- Detects $\gamma\text{-rays}$ coming from DM annihilations in the GC.
- Scheduled for launch in May 2008 for a 5-year mission.
- Will perform an all-sky survey in the energy range [1,300]GeV.
- Effective Area: $\sim 10^4 cm^2$, Angular Resolution: $0.1^0 \times 0.1^0.$
- $\bullet\,$ Will examine the inner \sim 7pc of the Milky Way.

GLAST's Background

- Diffuse γ -ray measurements from HESS.
- HESS point-source (\sim Sgr A*, $E_{\gamma} \geq$ 160GeV)
 - \rightarrow Possibly related to some astrophysical accelerator.
- HESS might be underestimating the low-energy background from the GC.

(Zaharijas and Hooper, arXiv:astro-ph/0603540)

- EGRET point source (Near the galactic center)
 - \rightarrow Difficult to interpret as coming from DM annihilation.

(Dodelson, Hooper and Serpico, arXiv:0711.4621[astro-ph])

Our choice: Interpolation between HESS and EGRET data.

ILC: Subtleties

Approach valid for soft/collinear photons \rightarrow Undetectable!

• Nevertheless, it gives satisfactory results outside the soft/collinear region for **nonrelativistic** WIMPs.

To ensure the WIMPs' non-relativistic nature we impose the following kinematical cuts:

$$\frac{\sqrt{s}}{2}\left(1-\frac{8m_{\chi}^2}{s}\right) \leq E_{\gamma} \leq \frac{\sqrt{s}}{2}\left(1-\frac{4m_{\chi}^2}{s}\right)$$

• Main background process: Radiative neutrino production (CalcHEP 2.5).

Discrimination Method

Analysis based on extended likelihood function:

$$L = \frac{(N_{th}^{scan})^{N_{Exp}}}{N_{Exp}!} \exp\left(-N_{th}^{scan}\right) \prod_{i=1}^{N_{Exp}} f(E; m_{\chi}, \sigma_{\chi-p})$$

- Calculate the theoretical number of events, *N*_{th}, for the input mass and cross-section.
- Draw an "experimental" nb of events, N_{Exp} , from a Poisson distribution.
- Scan the $(m_{\chi}, \sigma_{\chi-N})$ parameter space and find the experiment's estimation, taking into account the theoretical nb of events of every point in the PS, N_{th}^{scan} .
- Generate a large number of experiments, repeat the procedure, pick the one that averages all experiments' results.
- From this experiment, plot $(m_{\chi}, \sigma_{\chi-N})$ non-discrimination regions.

 \Longrightarrow This method allows to account for random deviations from the expected number of events.