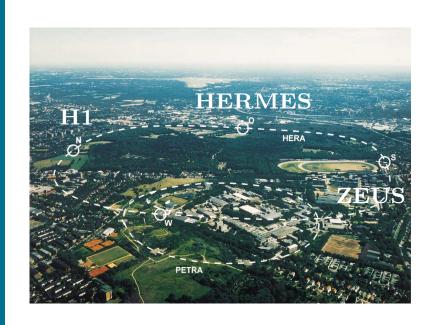
Etude des événements diffractifs avec production de jets et le proton diffusé détecté dans le spectromètre à protons VFPS dans l'expérience H1


 $\exists ulie\ Delvax$

I.I.H.E., ULB.

- Présentation du collisionneur HERA et du détecteur H1
- Les interactions profondément inélastiques DIS
- La Diffraction
- Conclusions

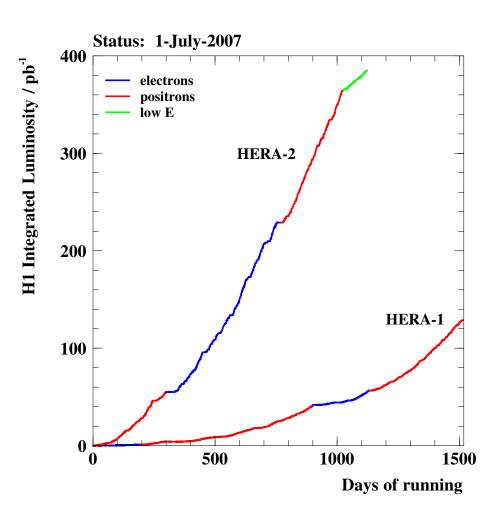
Le collisionneur HERA

$$e(27.5 GeV) \longrightarrow \longleftarrow p(920 GeV)$$
 $\sqrt{s} \sim 320 \text{ GeV}$
220 paquets
 $10^{10} \text{ particules}$
 $10^{11} \text{ particules}$
 60mA
 150 mA
 $\mathcal{L} \simeq 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
Taux: 96 ns (10.4 MHz)

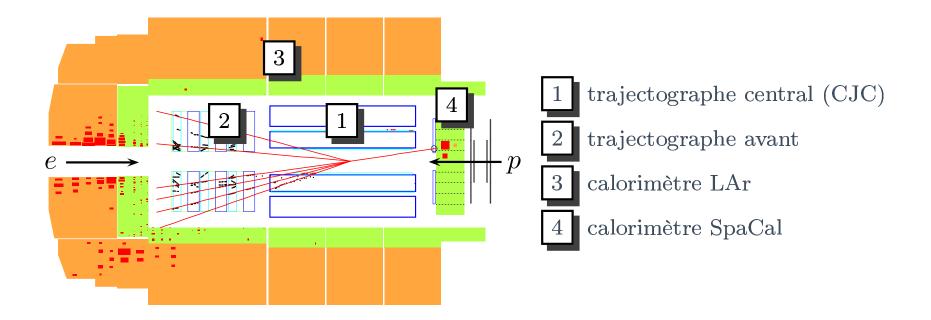
Prise de données : début: 1992

fin: juillet 2007

But: Etudier la structure du proton

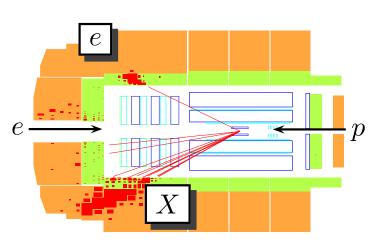

⇒ Comprendre sa dynamique
interne dans la cadre de la QCD

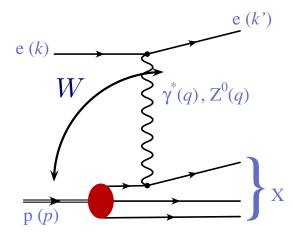
- 2 détecteurs pour l'étude génerale : H1 et ZEUS
- 1 expérience cible fixe pour étudier le spin du proton : HERMES (e-gaz polarisé)


Le collisionneur HERA

Lumi intégrée $\sim 600 \ pb^{-1}$ 3 Périodes

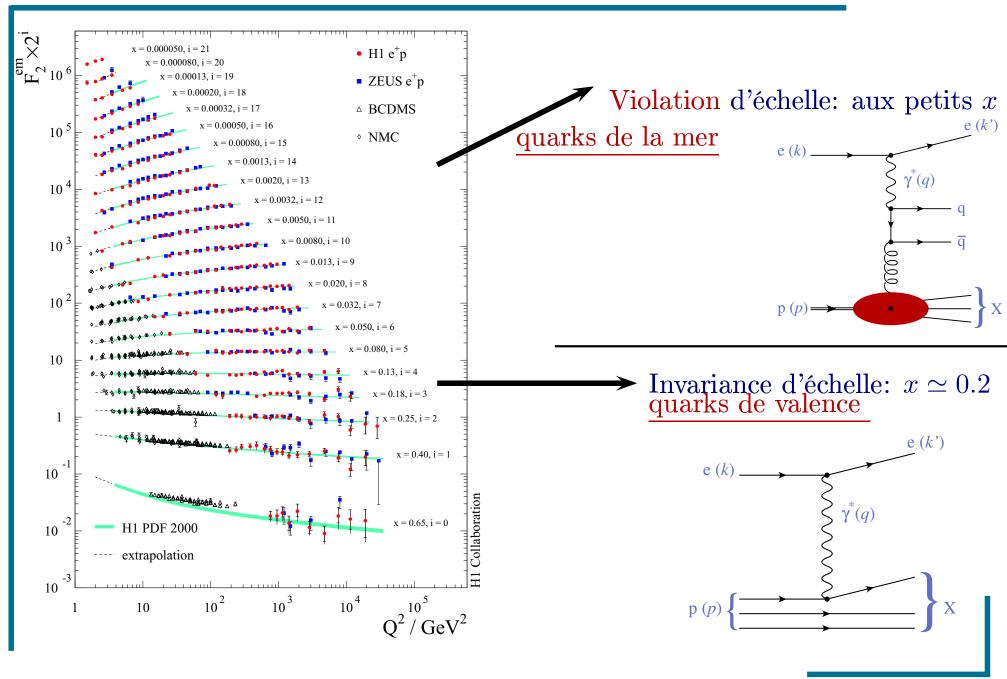
- HERA I (1992-2000) Lumi intégrée $\sim 150~pb^{-1}$
- HERA II (2003-2007): phase de haute luminosité
 - Modifications du collisionneur
 - Modifications du détecteur H1
- HERA II (avril-juin 2007) : données à basse énergie $E_p = 575, 460 GeV$




Le détecteur H1

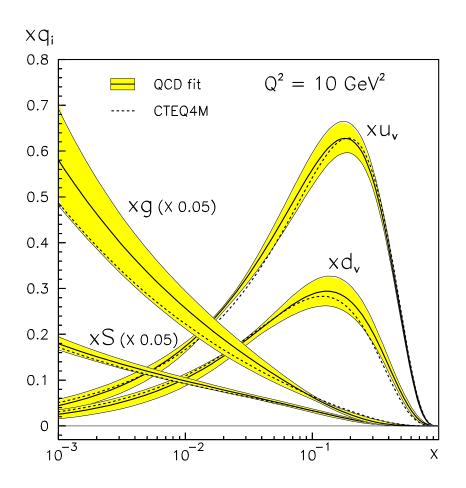
Diffusion profondément inélastique

 $\sqrt{s} \gg \rightarrow$ Diffusion profondément inélastique (DIS) $e p \rightarrow e X$



 $Q^2=-q^2$: virtualité du photon échangé $W^2=(p+q)^2$: carré de l'énergie dans référentiel centre de masse γ^*-p x: variable de Björken: fraction de l'impulsion longitudinale du proton emportée par quark interagissant avec le photon $y=Q^2/s\,x$ inélasticité: fraction énergie perdue par l'électron dans le référentiel où le proton est au repos

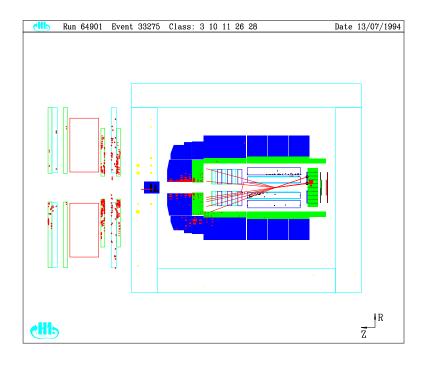
$$\frac{d^2\sigma}{dx\,dQ^2}\sim \frac{2\,\pi\,\alpha^2}{x\,Q^4}\left[1+(1-y)^2\right]F_2(x,Q^2)$$
 fonction de structure du proton


Les fonctions de structure

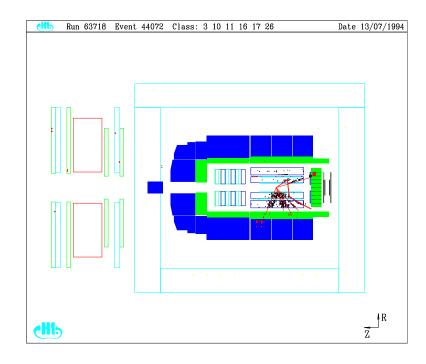
Les densités de partons

L'évolution de F_2 avec Q^2 est déterminée par les équations d'évolution DGLAP

Les densités de quarks et de gluons peuvent être extraites des mesures

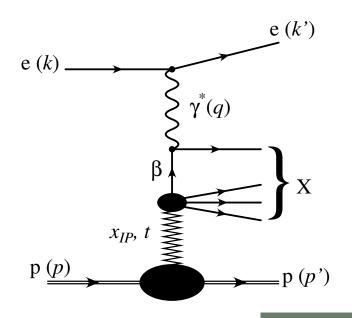

La diffraction

A HERA, environ 10% des événements sont des événements **DIFFRACTIFS**


$$ep \rightarrow epX$$

La diffraction $ep \rightarrow epX$

cas général non diffractif: $ep \rightarrow eX$


diffraction: $ep \rightarrow epX$

saut en rapidité \Rightarrow absence de champ de couleur entre le proton et $X \Rightarrow$ objet neutre de couleur échangé: le **Poméron**

La cinématique

$$ep \rightarrow epX$$

 $x_{\mathbb{P}}$ = fraction d'impulsion longitudinale du proton portée par le poméron (\mathbb{P})

 β = fraction d'impulsion longitudinale du parton interagissant avec le photon

 t = Impulsion échangée au vertex du proton au carré

$$x = x_{I\!\!P} \beta$$

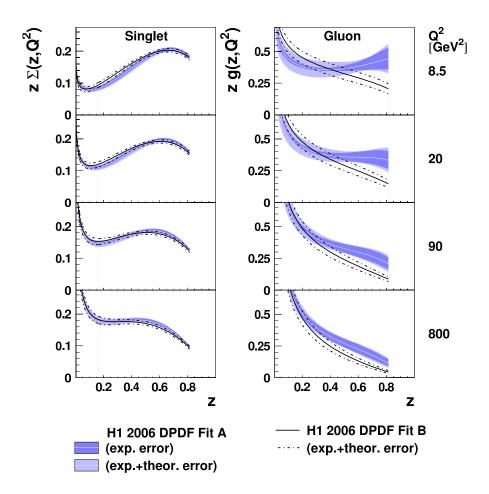
Section efficace diffractive

$$\frac{d^4\sigma(x_{I\!\!P},Q^2,\beta,t)}{dx_{I\!\!P}dQ^2d\beta dt} = \frac{4\pi\alpha^2}{\beta x_{I\!\!P}Q^4} (1-y-\frac{y^2}{2}) F_2^{D(4)}(x_{I\!\!P},Q^2,\beta,t) \qquad y = Q^2\beta x_{I\!\!P} 4E_e E_p$$

$$F_2^{D(4)}=$$
 Fonctions de structure diffractives $F_2^{D(4)}=\sum_a e_a^2 \beta f_a^D(x,Q^2,x_{I\!\!P},t)$

Le théorème de Factorisation

- Identique à la factorisation dans le cas DIS
- Prouvé pour la diffraction en électro-production (DDIS) pour $Q^2 >$ ques GeV^2


$$d\sigma^{ep \to ep X}(x, Q^2, x_{I\!\!P}, t) = \sum_q f_q^D(x, Q^2, x_{I\!\!P}, t) \otimes d\hat{\sigma}^{eq}(x, Q^2)$$

 $f_q^D(x,Q^2,x_{I\!\!P},t)=$ densité de partons **UNIVERSELLES** (PDFs) \Rightarrow NON PERTURBATIF

 $d\hat{\sigma}^{eq}(x,Q^2)$ Elément de matrice de l'interaction dure \Rightarrow PERTURBATIF

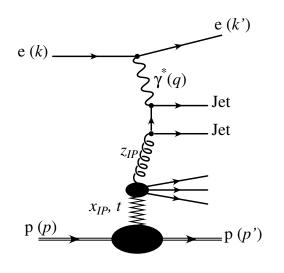
Les PDFs

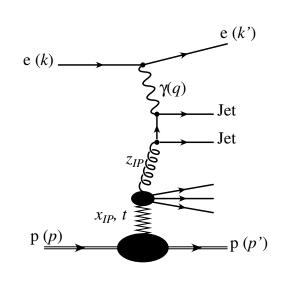
mesure de $\sigma \Rightarrow$ détermination de $F_2^D \Rightarrow$ détermination des densités de partons

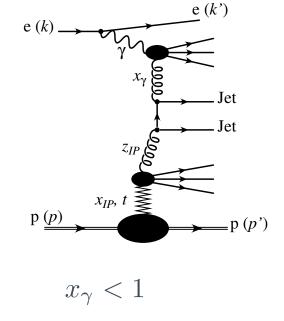
 $z=\beta$ au LO H1 Collab., A. Aktas et al., Eur. Phys. J. C48 (2006) 715-748

Jets: $ep \rightarrow ep+Jet1+Jet2$

En DDIS

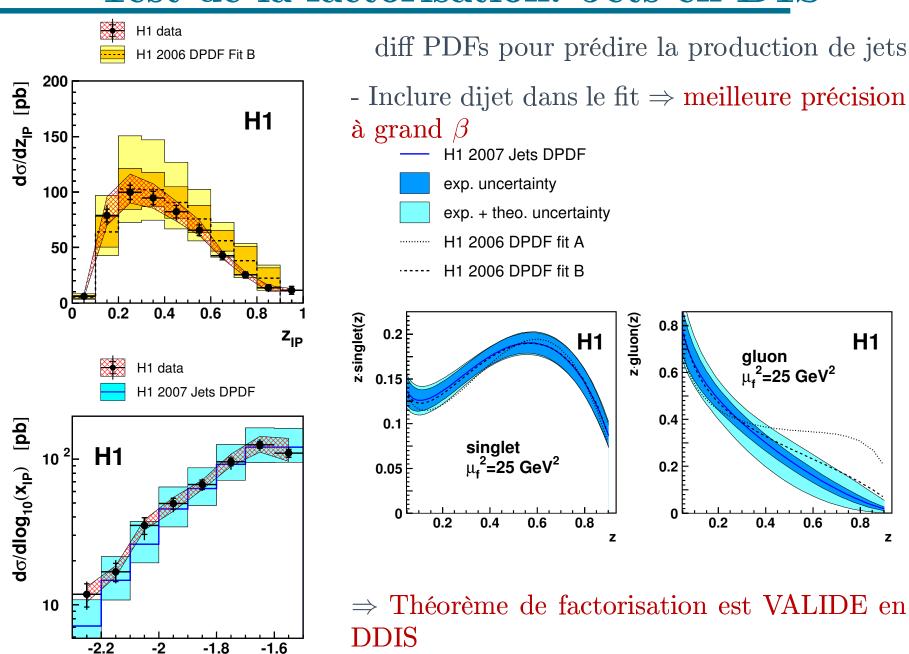

 Q^2 > qques GeV^2


En Photoproduction


 $Q^2 \sim 0 GeV_{\perp}^2$

Photon Direct

Photon Résolu

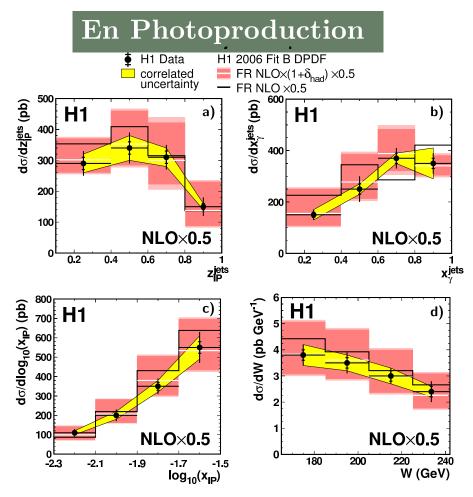


$$x_{\gamma} = 1$$

Jets \Rightarrow Sensibles aux densités de gluons Test de la factorisation : Universalité des densités de partons f_q^D

Test de la factorisation: Jets en DIS

H1 Collab., A. Aktas et al., JHEP 0710:042, 2007


 $\log_{10}(\mathbf{X}_{\mathsf{IP}})$

H1

8.0

Test de la factorisation: Jets en PHP

Nouvelle échelle dure : P_T des jets

⇒ Prédictions avec les PDFs NE DECRIVENT PAS les données

H1 Collab., A. Aktas et al., Eur. Phys. J. C 51 (2007) 549

Brisure de factorisation en PHP ou ...?

3 Hypothèses

1. Domaine non perturbatif

Coupure sur le P_T des jets pas assez contraignante \Rightarrow Pas d'échelle dure \Rightarrow Pas perturbatif

2.Brisure du théorème de factorisation

Factorisation est prouvée pour les interactions γp .

Or en PHP, le photon est résolu $\Rightarrow \gamma \rightarrow q\bar{q} \neq \gamma p$

La factorisation pourrait être brisée du aux interactions entre les composants hadroniques du photon et le proton (incident ou diffusé) \Rightarrow Moins d'événements diffractifs observés que prédit.

MAIS $x_{\gamma} = 1 \Rightarrow$ photon DIRECT et on observe également un désaccord entre prédictions et données

Brisure de factorisation en PHP ou ...?

3. Factorisation au vertex du proton

En diffraction nous effectuons l'HYPOTHESE de factorisation dite "de Regge"

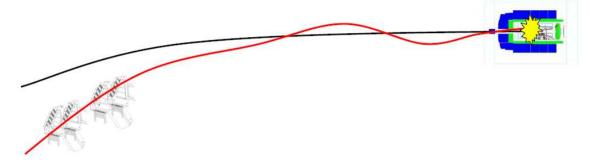
$$f_q^D(x, Q^2, x_{I\!\!P}, t) = f_{\mathbb{P}}(x_{I\!\!P}, t) \cdot f_q(\beta = \frac{x}{x_{I\!\!P}}, Q^2)$$

 $f_q(\beta, Q^2) = \text{Densit\'es de partons dans le pom\'eron}$

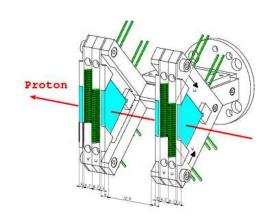
$$f_{\mathbb{P}}(x_{\mathbb{P}},t) \propto \frac{e^{-b|t|}}{x_{\mathbb{P}}^{2\alpha_{\mathbb{P}}(t)-1}} = \text{Flux de poméron dans le proton}$$

 \Rightarrow La dépendance en t est supposée indépendante du domaine cinématique

Cette hypothèse n'a jamais pu être vérifiée car le proton diffusé n'est pas détecté \rightarrow pas de mesure de t

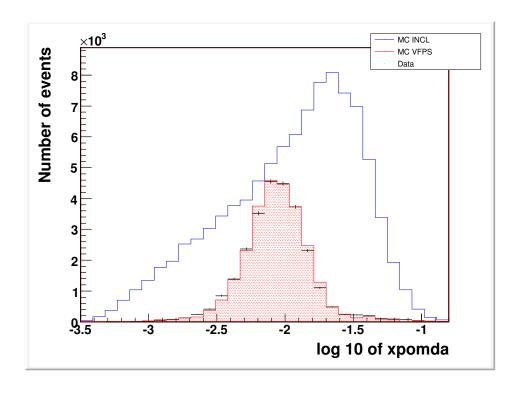

Mon analyse

Etude des Dijets en diffraction en DIS et en PHP avec le proton diffusé détecté dans le spectromètre à protons VFPS Objectifs:


- Mesure des sections efficaces de production de jets en diffraction en DIS et en PHP et comparaison avec les prédictions
- Pour la première fois: Mesure et comparaison de la dépendance en t en DIS et en PHP
- ⇒Comparaison sous forme de rapport entre le DIS et la PHP pour réduire les incertitudes théoriques.
- ⇒ Pas de bruit de fond du proton dissocié ⇒ Réduction de l'erreur systématique

Le spectromètre à protons VFPS

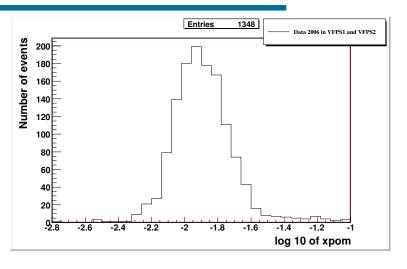
Installé en 2003, données depuis 2005 2 stations VFPS1 et VFPS2 à 220m et 224m du PI


→ Roman Pot : fibres scintillantes et Tuiles pour le déclenchement

Le VFPS

Luminosité collectée par le VFPS en 2006-2007 : $\sim 130~\rm pb^{-1}$ (Lumi H1=190 $\rm pb^{-1})$

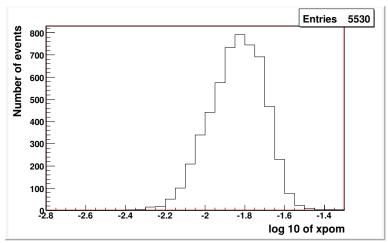
Correspond à ~ 880000 événements en DDIS avec le proton diffusé détecté dans le VFPS


Bonne acceptance dans le domaine diffractif $0.005 < x_{I\!\!P} < 0.03$ et $|t| < 0.5 GeV^2$

Statistique

1. Statistique en DIS coupures:

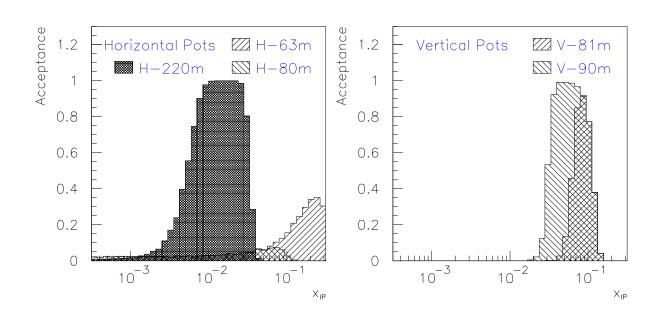
•
$$pt_{jet1}^* > 5.5 GeV$$
 et $pt_{jet2}^* > 4 GeV$


Plus de 1300 événements DIS pour les années 2006 et 2007

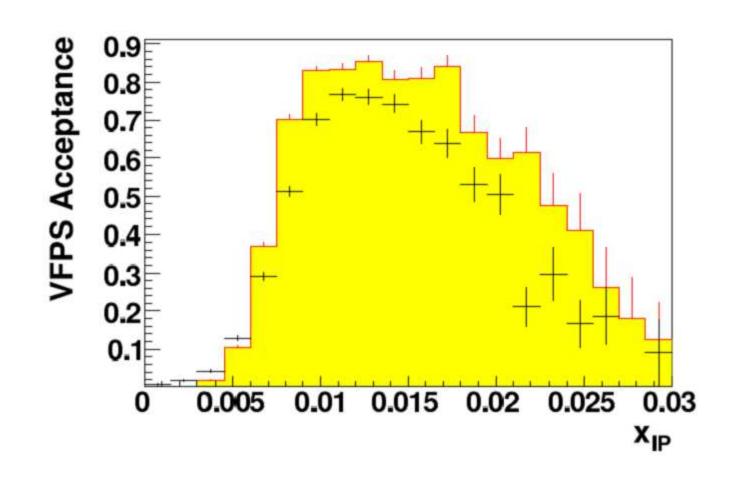
2. Statistique en PHP coupures:

- $pt_{jet1}^* > 5.5 GeV$ et $pt_{jet2}^* > 4 GeV$
- électron non détecté

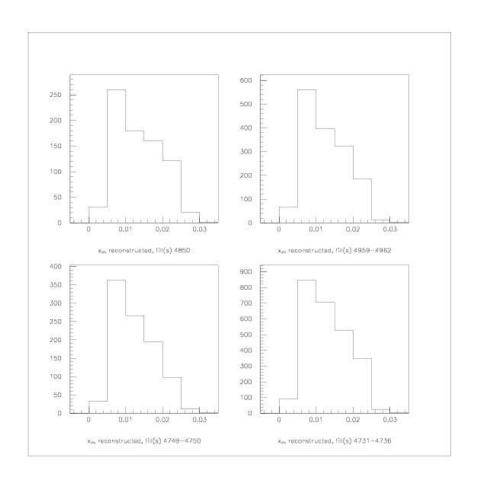
Plus de 5500 événements en photoproduction de décembre 2006 à mars 2007

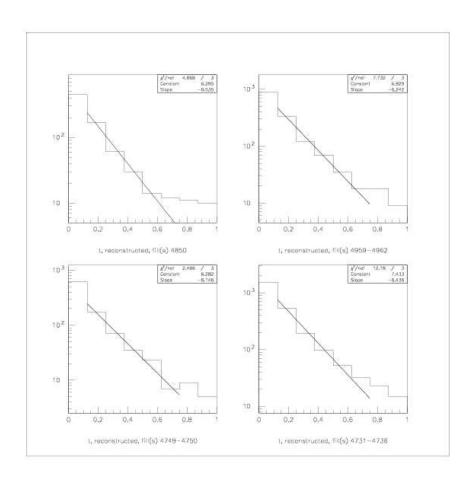

Conclusions

Etude des événements diffractifs avec production de jets et le proton diffusé détecté dans le spectromètre à protons VFPS

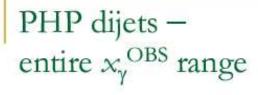

Objectifs:

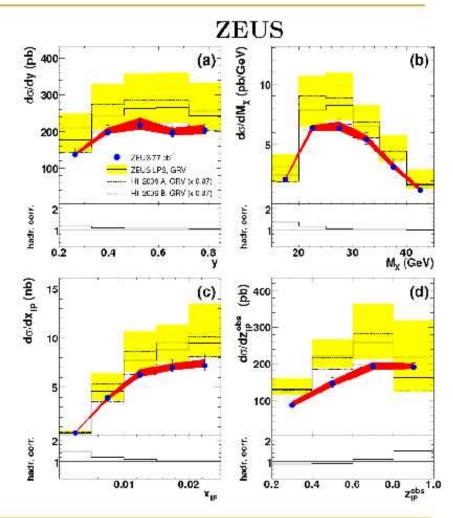
- ⇒ Mesurer la section efficace dans les deux domaines cinématiques DIS et PHP
 - Meilleure précision sur les densités de gluons
 - Test de la factorisation: Universalité des densités de partons
 - → Factorisation est valable en DIS
 - ← Factorisatison semble être brisée en PHP
- \Rightarrow Pour la première fois Mesure et comparaison de la dépendance en t des deux domaines \rightarrow sont elles identiques?
 - ← Explication de la brisure de factorisation en PHP


Acceptance of FPS and VFPS



Acceptance of VFPS


Reconstruction des variables avec VFPS

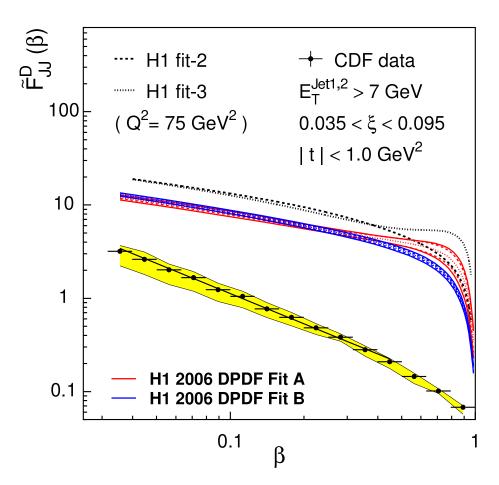


Test of factorisation at ZEUS

ZEUS talk in DIS 07, Munich

- No strong evidence of the cross section suppression
- Good agreement with H1 2006 fit B PDF
 - H1 2006 Fit A and
 ZEUS LPS: ~
 20 % higher, but
 within uncertainty

17 Apr 2007


Y. Yamazaki (Kobe U) Jet production in diffractive DIS and photoproduction at ZEUS

Factorisation seems ok

Not the same pt domain (H1: $pt^* > 5(4)GeV$, ZEUS: $pt^* > 7.5GeV$)

Test of factorisation at TEVATRON

 $p\bar{p}$ collider

- T. Affolder et al., The CDF Collaboration, Phys. Rev. Lett 84, 5043 (2000)
- ⇒ Factorisation breaking in photoproduction