

Etude et recherche du boson de Higgs dans le canal H $\rightarrow \gamma\gamma$ avec ATLAS

JJC 2008 Pauline Bernat* Directeur de thèse : Marumi Kado**

* <u>bernat@lal.in2p3.fr</u> ** <u>kado@lal.in2p3.fr</u>

Motivations

Cadre du MS : recherche du boson de Higgs

Mécanisme de Higgs pour comprendre la brisure spontanée de l'échelle EW qui génère la masse des bosons faibles W et ${\rm Z}^0$

Masse du Higgs : paramètre libre (contraintes théoriques et expérimentales)

Motivations

Cadre du MS : recherche du boson de Higgs

Mécanisme de Higgs pour comprendre la brisure spontanée de l'échelle EW qui génère la masse des bosons faibles W et ${\rm Z}^0$

Masse du Higgs : paramètre libre (contraintes théorique et expérimentales)

Canal H $\rightarrow \gamma\gamma: 115 < M_{_{\gamma\gamma}} < 150~GeV/c^2$

Les moyens expérimentaux

Le LHC

- collision p-p à 14/10 TeV toutes les 25/75 ns - pile-up : entre 2 et 25 interactions/collision - phase basse/haute lumi. 10^{33} / 10^{34} cm⁻²s⁻¹ (30 fb⁻¹ en 2011, 300 fb⁻¹ en 2015)

ATLAS

- détecteur de trace interne (ID)
- solénoïde (2 T)
- calorimètre électromagnétique (EM)
- calorimètre hadronique
- spectromètre à muons
- système toroïdal (0.5 à 1 T)

Phénomène étudié

$pp \rightarrow H(\rightarrow \gamma \gamma) + X$ (analyse inclusive)

Les enjeux de l'analyse

1./ Discrimination du fond (production diphoton)

2./ Résolution sur la masse (calorimètrie d'ATLAS)

Calorimètre EM d'ATLAS

Design du calo EM optimisé pour l'étude du canal H $\rightarrow \gamma\gamma$: résolution en énergie (et angulaire) nécessaire à une reconstruction précise de la masse invariante) $\frac{\sigma_E}{E} \approx \frac{10\%}{\sqrt{E}} \oplus 0.7\%$

$$M_{\gamma 1 \gamma 2} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1-\cos\theta_{\gamma 1 \gamma 2})}$$

Calorimètre à échantillonage (Argon liquide/Plomb)

Structure en 4 compartiments :

0./ pre-sampler (mesure l'énergie d'une gerbe en amont du calo)

1./ strip (granularité fine)

 \rightarrow séparation γ/π^0 , début de gerbe EM

2./ middle

 \rightarrow mesure une grande fraction de l'énergie

de la gerbe

3./ back

 \rightarrow queue de gerbe (EM vs. Had)

Calorimètre EM d'ATLAS

Design du calo EM optimisé pour l'étude du canal $H \rightarrow \gamma\gamma$: **résolution en énergie (et angulaire)** nécessaire à une reconstruction précise de la masse invariante)

$$M_{\gamma 1 \gamma 2} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1-\cos\theta_{\gamma 1 \gamma 2})}$$

Photon ⇔ Gerbe ElectroMagnétique (EM) dans le détecteur. Gerbe EM : cascade de photons et de e⁺/e⁻

Structure en 4 compartiments :

0./ pre-sampler (mesure l'énergie d'une gerbe en amont du calo)

1./ <u>strip</u> (granularité fine)

→ séparation γ/π^0 , début de gerbe EM

2./ middle

→ mesure une grande fraction de l'énergie de la gerbe

3./ <u>back</u>

 \rightarrow queue de gerbe (EM vs. Had)

Rappel : signal (gluon fusion)

Rappel : signal (gluon fusion)

Bruit de fond : production diphoton

Rappel : signal (gluon fusion)

Bruit de fond : production diphoton

IS : qq vs gg for signal Effets QCD (IS gluon radiation) différents \rightarrow Impact sur le spectre en P_{Tyy}

IS : Initial State

Rappel : signal (gluon fusion)

Bruit de fond : production diphoton

Same IS : gg

Rappel : signal (gluon fusion)

Bruit de fond : production diphoton

IS : qg vs gg for signal FS photon radiation → divergence colinéaire et IR → fonction de fragmentation

Rappel : signal (gluon fusion)

Bruit de fond : production diphoton

IS : qg vs gg for signal
FS photon radiation → divergence colinéaire et IR
→ fonction de fragmentation

Rappel : signal (gluon fusion)

Bruit de fond : production diphoton

Un π^0 (de gd P_T) peut être reconstruit comme un photon si la séparation des photons est plus petite que la taille d'une cell du calo

Etape de reconstruction \rightarrow fake-photon (π^0) \rightarrow fine granularité du strip

Catégories

Bruit de fond irréductible

Bruit de fond irréductible

Bruit de fond semi-réductible 8

Bruit de fond irréductible

Bruit de fond semi-réductible 8

Stratégie d'analyse

1./ Système de déclenchement (trigger) :
 → pour réduire le fond
 > pour pallier aux limites de stacks

 \rightarrow pour pallier aux limites de stockage

Trigger (3 niveaux) utilisé : 2g20i isolation calorimétrique et coupures sur la forme des gerbes

Level1Level2Event FilterTaux d'Evts :40 MHz \rightarrow 75 kHz \rightarrow 3 kHz \rightarrow 200 HzTaux de jets :140 Hz \rightarrow 5 Hz \rightarrow 1.6 Hz

2./ Analyse offline : coupures cinématiques

→ optimise la réjection du bruit (vs. le signal) → optimise le pouvoir discriminant des variables cinématiques ($P_{T\gamma\gamma}, M_{\gamma\gamma}, \cos\theta^*,...$)

γ₁

θ*

Bruits de fond (et signal)

Points développés pendant la thèse :

- normalisation des bruits de fond irréductible et semi-réductible (et aussi du signal)

- étude des variables discriminantes ($P_{T\gamma\gamma},\,M_{\gamma\gamma},\,cos\theta^{*},\,...$)

- corrélations des variables (*Exemple* : $M_{\gamma\gamma}$ vs. cos θ^*)

→ Gain en signification statistique (mesure du potentiel de découverte) vs. comptage d'evts

Etude basée sur les simulations et la comparaison des résultats des ≠ Monte-Carlo (MC)

Résultats

- Différentes sections efficaces

- Différentes distributions des variables cinématiques (*exemple* : P_{Tyy} sensible aux radiations QCD)

Sources d'incertitudes systématiques

Incertitudes systématiques :

- signal $\rightarrow 15\%$
- bruit de fond irréductible $\rightarrow 18\%$
- bruit de fond semi-réductible $\rightarrow 32\%$

Résultats (Analyse inclusive)

Résultats (Analyse inclusive)

Conclusion et perspectives

Conclusion :

- Canal avec un faible rapport d'embranchement, mais favori pour un Higgs léger (signature claire au LHC)

- Estimation du signal et des sources de bruit de fond avec MC

- Stratégie d'analyse : coupures, variables discriminantes, analyse exclusive/inclusive

Perspectives :

- Préparation de l'analyse à 10 TeV (prévu au prochain démarrage)
- Etude du bruit de fond réductible

- Construire une stratégie d'analyse (prise en compte de nouvelles variables, des corrélations)

Back-Up

Bruits de fond (et signal)

Programmes :

Calcul d'Elément de Matrice (ME) avec :

- corrections QCD
- effets fins de QCD (fragmentation, ...)

Exemple (bruit de fond irr.) :

ResBos (NLO)Diphox (NLO+frag.)

générateurs MC :

calcul de ME à l'arbre (Leading Order) + Parton Shower (PS) : simule l'évolution du processus dur dans le détecteur (radiations à l'état initial et final, interactions multiples,...)

Exemple : - PYTHIA - Herwig

- Différentes section efficaces

- Différentes distributions des variables cinématiques (exemple : P_{Tyy} sensible aux radiations QCD) Sources d'incertitudes systématiques

Résultats

Incertitudes systématiques

Différentes sources (quelques exemples) :

- calcul d'EM à un ordre fixe en th. des perturbations
- → dépendance aux échelles de normalisation, factorisation (et fragmentation)
- calcul de la section efficace avec certaines pdf
- effets du détecteur (résolution en énergie ...)

- ...

Résultats :

- signal $\rightarrow 15\%$
- bruit de fond irréductible $\rightarrow 18\%$
- bruit de fond semi-réductible $\rightarrow 32\%$

Normalisations

Estimation des k-factors pour les bruits de fond irréductible et semi-réductible <u>k-factor</u> : σ_{NLO}/σ_{LO} (général : $\sigma_N{}^n{}_L/\sigma_N{}^{n-1}{}_L$) + effets QCD (cf. fragmentation), PS,...

Résultats :

- bruit de fond irréductible \rightarrow k = 1.18 ± 0.21
- bruit de fond semi-réductible \rightarrow k = 1.84 ± 0.59