▲ □ ▶ 프네님

CEA - Saclay

Recherche du boson de Higgs se désintegrant en 4-leptons dans ATLAS Isolation calorimétrique des muons

Bruno Lenzi

CEA - Saclay

Journées des jeunes chercheurs 05/12/08

Outline

1 ATLAS Muon Spectrometer

2 Higgs to 4-lepton analysis

3 Summary

・□▶ 連目 2 CEA - Saclay

Outline

1 ATLAS Muon Spectrometer

2 Higgs to 4-lepton analysis

3 Summary

▲□▶콜⊫ 3 CEA - Saclay

Large Hadron Collider (LHC)

- 27.6 km accelerator
- p + p collisions at 14 TeV (also Pb + Pb @ 5.5 TeV)
- 4 experiments
 - 2 general purpose: ATLAS, CMS
 - B-physics: LHC-b
 - Heavy ions: ALICE

- Designed to look for the Higgs boson and any evidence of new physics BSM
- Precision measurements (m_{top}, m_W)
- Dealing with (very) rare processes, cannot miss interesting events!

A Toroidal LHC ApparatuS (ATLAS)

- Inner Detector (ID), Calorimeters, Muon Spectrometer (MS)
- Solenoidal (ID) and toroidal (MS) magnets
- 10⁸ readout channels
- More than 2k physicists

Muons in LHC

- Muons are the only particles that can traverse large quantity of material (calorimeters)
- Present in several physical processes (clean signature)
- Usually low branching ratios

Requirements

- Excellent reconstruction efficiency and momentum resolution over wide range
- Very low fake rates
- Efficient trigger capability

□ > Ξ[3

ATLAS Muon Spectrometer

- Trigger and precision chambers in air core toroids
 - Independent trigger system and momentum measurement
 - Muons bent in the polar direction
- 4 different chamber technologies
- 16 sectors, 3 stations, $\approx 2k$ chambers, 10⁶ channels, 10³ m²
- Optical alignment aiming 30 µm precision

 $JJC - H \rightarrow 4I$

- Hit position defined by tube and drift radius
- Momentum determined by sagitta measurement (s)
- 2nd coordinates measured in trigger chambers (not shown)

▲ □ ▶ 프네님

- MS coverage ($|\eta| < 2.7$) exceeds ID ($|\eta| < 2.5$)
- Combined muons: measured by Inner Detector and Muon Spectrometer
 - Improved momentum measurement
 - Efficiency around 95%
 - Very low fake rates $\approx 10^{-3}$ /event
- Tagged muons: by MS or calorimeter
 - Low-pt muons do not reach outer stations
 - Regions without 3 stations

▲ □ ▶ 도비님

- Standalone muons: not seen by Inner Detector
 - MS coverage ($|\eta| < 2.7$) exceeds ID ($|\eta| < 2.5$)
- Combined muons: measured by Inner Detector and Muon Spectrometer
 - Improved momentum measurement
 - Efficiency around 95%
 - Very low fake rates $\approx 10^{-3}$ /event
- Tagged muons: by MS or calorimeter
 - Low-pt muons do not reach outer stations
 - Regions without 3 stations

▲ □ ▶ 도비님

CEA - Saclay

CEA - Saclay

ATLAS Muon Spectrometer - muon energy loss and isolation

- Isolation is related to detector activity around a given particle
 - One of the main features used to separate signal and backgrounds in SM analysis, Higgs searches and beyond
 - Used to separate muons from W,Z and inside jets (b,c)

ATLAS Muon Spectrometer - muon energy loss and isolation

- Muons also loose energy in the calorimeters (impact on momentum resolution)
- Studying optimizations to better describe E-loss and consequently isolation
 - Minimum number of cells to consider for E-loss
 - Size of the region around the muon that maximizes S/B

▲ □ ▶ 글 글

Outline

- 2 Higgs to 4-lepton analysis
- **3** Summary

<ロト 国目 12 CEA - Saclay

Higgs boson

- Search for the Higgs boson is the main objective of ATLAS and LHC
- Constrains by direct (> 114.4 GeV LEP) and indirect searches (≤ 180 GeV - LEP / Tevatron) (95% CL)
 - But we have to look all over!
- Many production / decay modes, but in particular $H \rightarrow ZZ$
 - One the highest branching ratios
 - H \rightarrow ZZ \rightarrow 4-leptons (e, μ) is the so called "golden channel"


```
CEA - Saclay
```

▲ □ ▶ 프네님

CEA - Saclay

14

Higgs to ZZ

We see a peak! But is it the (SM) Higgs?

- Apart from Higgs mass, SM predicts width, spin, parity, couplings....
- ZZ is suitable for measuring Higgs properties
 - Mass with good precision
 - Width for high masses
 - Spin and parity, high statistics needed

Bruno Lenzi	
$JJC - H \rightarrow 4$	

▲ □ ▶ 프네님

CEA - Saclay

Higgs to 4-leptons

Why "golden channel"?

- Clear peak over smooth background
- Significant discovery potential for m_H > 130 GeV
- Precise mass measurement

Higgs to 4-leptons

Why "golden channel"?

- Clear peak over smooth background
- Significant discovery potential for m_H > 130 GeV
- Precise mass measurement

However..

- Very low b.r. for $Z \rightarrow II$ (3% each)
- Low cross section when WW becomes on-shell (160 GeV)
- Soft leptons for low m_H (Z off-shell)

Process	Cross-section
$H \rightarrow 4 $ (120 - 200 GeV)	1.6 - 15.5 fb
$ZZ^{(*)} \rightarrow 4$	57.2 fb
$Zb\bar{b} \rightarrow 4I + X$	812 fb
$t\bar{t} \rightarrow 4 + X$	6064 fb
4-leptons with $p_T > 5$ GeV and	$ \eta < 2.5$

CEA - Saclay

Higgs to 4-leptons

However...

- Very low b.r. for $Z \rightarrow \parallel (3\% \text{ each})$
- Low cross section when WW becomes on-shell (160 GeV)
- Soft leptons for low m_H (Z off-shell)

	Process	Cross-section
	$H \rightarrow 4 $ (120 - 200 GeV)	16 - 155 fb
	$ZZ^{(*)} \rightarrow 4$	57.2 fb
	$Zb\bar{b} \rightarrow 4I + X$	812 fb
	$t\bar{t} \rightarrow 4I + X$	6064 fb
л	lantana with n > E Cal/ an	d m < 2 5

4-leptons with $p_{m{ au}} >$ 5 GeV and $|\eta| <$ 2.5

Leptons from bottom decays

- Are softer (p_T)
- Are less isolated (track and calorimeter isolation)
- Have a displaced vertex (impact parameter (IP))
- Do not form resonance (di-lepton mass)

Same effect on signal and ZZ! < □ ≻ ≞ =

CEA - Saclay

Higgs production modes

- VBF has a clear experimental signature: two forward jets with high-p_T and high separation in η
 - Used when gg-fusion is not feasible $(H \rightarrow \tau \tau)$ or to reduce QCD backgrounds $(H \rightarrow WW)$
- Advantages: can measure Higgs coupling to W,Z, etc.
- Drawback: relatively small fraction of the production $(\approx 20\%)$

Started to investigate feasibility of VBF analysis in $H \rightarrow 4 |$ channel

Can be used to reduce "ireducible" ZZ bg

VBF analysis in $H \rightarrow 4l$ channel

Cross sect	ions and exped	cted events (30	fb ⁻¹)	
Higgs	$\sigma_{\rm NLO}$ (fb)	g uon-fusion	VBF	
mass	$H \rightarrow 4$	events	events	
165	2.29	42	6	
180	5.38	102	16	
200	20.53	397	66	
300	13.32	267	46	

- Dealing with (very) low statistics
- Started with VBF H $\rightarrow \tau \tau$
 - Not efficient enough for this analysis
- Studying optimizations on tagging and cuts for VBF jets

Image: 1 million (1 million)

CEA - Saclay

Do not have a good simulation for the moment, but it looks promising....

VBF analysis in H \rightarrow 4l channel

Cross sections and expected events (30 fb^{-1})			
Higgs	$\sigma_{\rm NLO}$ (fb)	g uon-fusion	VBF
mass	$H \rightarrow 4$	events	events
165	2.29	42	6
180	5.38	102	16
200	20.53	397	66
300	13.32	267	46

- Dealing with (very) low statistics
- \blacksquare Started with VBF H $\rightarrow \tau\tau$
 - Not efficient enough for this analysis
- Studying optimizations on tagging and cuts for VBF jets

□ > Ξ[5]

CEA - Saclay

Do not have a good simulation for the moment, but it looks promising...

 $JJC - H \rightarrow 4I$

VBF analysis in H \rightarrow 4l channel

Cross sections and expected events (30 fb^{-1})			
Higgs	$\sigma_{\rm NLO}$ (fb)	g uon-fusion	VBF
mass	$H \rightarrow 4$	events	events
165	2.29	42	6
180	5.38	102	16
200	20.53	397	66
300	13.32	267	46

- Dealing with (very) low statistics
- \blacksquare Started with VBF H $\rightarrow \tau\tau$
 - Not efficient enough for this analysis
- Studying optimizations on tagging and cuts for VBF jets

< □ ▶ 포(=

CEA - Saclay

Do not have a good simulation for the moment, but it looks promising...

VBF analysis in $H \rightarrow 4I$ channel

Cross sections and expected events (30 fb^{-1})				
Higgs	$\sigma_{\rm NLO}$ (fb)	g uon-fusion	VBF	
mass	$H \rightarrow 4$	events	events	
165	2.29	42	6	
180	5.38	102	16	
200	20.53	397	66	
300	13.32	267	46	

- Dealing with (very) low statistics
- \blacksquare Started with VBF H $\rightarrow \tau\tau$
 - Not efficient enough for this analysis
- Studying optimizations on tagging and cuts for VBF jets

Do not have a good simulation for the moment, but it looks promising...

Outline

1 ATLAS Muon Spectrometer

2 Higgs to 4-lepton analysis

3 Summary

・□ ト ヨーヨー 18 CEA - Saclay

Image: 1 million (1 million)

CEA - Saclay

Summary and future plans

ATLAS Muon Spectrometer

- Very precise and complex system
- Muons give a clean signature for many physical processes
- Studying calorimetric isolation \rightarrow used on Higgs searches, SM and BSM analyses
- Higgs boson and the 4-lepton channel
 - H → ZZ can measure Higgs properties
 - 4-leptons is the "golden channel" but not that easy
 - \blacksquare Started VBF H \rightarrow 4 analysis

Plans:

- Continue with H analysis on simulation
- Muon isolation with simulation and real data (collisions or cosmics)

Muon trigger

✓ □ ► 重 = 2(CEA - Saclay