

1 / 36

Journées jeunes chercheurs Saint Flour

Mesure de la masse du quark top avec ATLAS

Antoine Marzin

CEA-Saclay

1^{er} décembre 2008

Antoine Marzin (CEA-Saclay) Mesure de la masse du quark top avec A 1^{er} décembre 2008

- Motivations pour une mesure précise de la masse du quark top
 - Indétermination théorique de la masse du quark top
- 3 La jet energy scale (JES)
- 4 Mesure de la masse du quark top dans le canal lepton + jets
 - Sélection des évènements
 - Reconstruction de l'état final tīt
 - La méthode des templates
 - Principe
 - Fonctions de densité de probabilité
 - Paramétrisation
 - Likelihood
 - Résultat
 - Bruit de fond
 - Incertitudes systématiques

Conclusion

Pourquoi mesurer la masse du quark top?

Le quark top est particulièrement spécial dans le Modèle Standard :

• $m_t \sim \frac{v}{\sqrt{2}}$ (Higgs vev) \Longrightarrow Couplage de Yukawa ~ 1 C'est le seul fermion près de l'échelle électrofaible

m_t contraint la masse du boson de Higgs standard via les corrections radiatives au *W* :

 \implies Correction $\propto \log M_H, M_{top}^2$

C. Amsler et al., Physics Letters B667, 1 (2008)

3 / 36

L'hypothèse et la quète du quark top

1975 : Découverte du lepton τ par Martin Perl @ SPEAR (SLAC). 1977 : Découverte du quark *b* en résonance $\Upsilon \rightarrow b\bar{b}$ @ FNAL. \implies Hypothèse d'un 6^{eme} quark pour compléter la 3^{eme} famille : le quark top

• 1978-1986 : PETRA en collision e^+e^- : Recherche de toponium : $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$: $\Rightarrow m_t > 30 \text{ GeV}$

• 1984-1990 : UA1 et UA2 en collision $p\bar{p}$: Recherche de single top : $p\bar{p} \rightarrow WX \rightarrow t\bar{b}X$: • Découverte en 1984 : $m_t = 40 \pm 10 \text{ GeV}$ Rectificatif en 1988.

 \Rightarrow Limite finale : $m_t > 69$ GeV

- 1989-1995; LEP en collision e^+e^- : Recherche de toponium : $e^+e^- \rightarrow Z \rightarrow t\bar{t}$: $\Rightarrow m_t > 45.8 \text{ GeV}$
- 1988-1989 : Tevatron en collision pp̄ : 1990 ⇒ mt > 77 GeV 1992 ⇒ mt > 91 GeV

Antoine Marzin (CEA-Saclay) M

1^{er} décembre 2008 4 / 36

La découverte

Le quark top est finalement découvert en février 1995 au Tevatron avec 68 pb⁻¹ à $\sqrt{s} = 1.98$ TeV par le processus : $p\bar{p} \rightarrow t\bar{t} \rightarrow W^+ bW^- \bar{b}$. Ils mesurent $m_t = 176 \pm 8 \text{ (stat)} \pm 10 \text{ (syst)} \text{ GeV}$ Les mesures indirectes favorisaient un top lourd : $m_t = 150-170 \text{ GeV}$ \implies Succès du Modèle Standard

Antoine Marzin (CEA-Saclay) Mesure de la masse du guark top avec A

Pourquoi une nouvelle mesure avec ATLAS?

La dernière mesure combinée de la masse du quark top au Tevaton est (2.8 fb⁻¹) :

$$m_t = 172.4 \pm 0.7 \text{ (stat.)} \pm 1 \text{ (syst.)} \text{ GeV}$$

▷ Ce sera un challenge pour le LHC d'atteindre une telle précision ! Mais le LHC sera une usine à top avec les principaux modes de production :

 $\sigma_{t\bar{t}}^{LHC} = 833 \pm 100 \text{ pb} (\text{NLO} + \text{NLL}) (\sim 10 \text{ Hz})$

 \implies \simeq 80 000 000 $t\bar{t}$ par an (100 jours) à haute luminosité (10³⁴ cm⁻² s⁻¹)

Par comparaison : $\sigma_{t\bar{t}}^{Tevatron} = 7 \text{ pb} (\simeq 0.1 \text{ Hz})$ \triangleright Un jour au LHC devrait produire autant de paires $t\bar{t}$ qu'un an au Tevatron ! L'erreur statistique étant rapidement négligeable avec ATLAS, l'erreur dominante sur m_t sera l'incertitude systématique 6 / 36

Antoine Marzin (CEA-Saclay) Mesure de la masse du guark top avec A

1^{er} décembre 2008

La masse du pôle

Au Tevatron, la masse mesurée est le paramètre d'entrée du Monte Carlo qui est la masse du pôle.

Considérons un processus de diffusion avec un propagateur de quark connectant 2 états asymptotiques composés de particules stables : ⇒ Existe-t-il un pôle dans le propagateur du quark correspondant à la masse du pôle d'un quark stable ?

En raison de l'hypothèse de confinement, seuls les états singlets de couleur ("sans couleur") existent en tant que particules libres ⇒ les états asymptotiques doivent être singlets de couleur. Mais le quark porte une charge de couleur ⇒ C'est un triplet de couleur.

La couleur n'est pas conservée dans un tel processus ! Il ne peut y avoir un pôle dans l'amplitude correspondant à la masse du pôle du quark top et il existe une irréductible incertitude théorique sur la masse du quark top de l'ordre de $\frac{A_{QCD}}{3}$ due aux effets non-perturbatifs.

Reconnection de couleur

Avec la grande statistique disponible dans ATLAS, nous pourrons mesurer la masse invariante des produits de désintégration du quark top qui est également la masse du pôle.

Le quark top se désintègre presque exclusivement via $t \rightarrow Wb$. Expérimentalement, le quark *b* est reconstruit comme un jet de hadrons non colorés.

 \implies Au moins un des hadrons reconstruits ne provient pas de la désintégration $t\overline{t}$.

Il y a une incertitude irréductible dans la masse invariante Wb de l'ordre de Λ_{QCD} .

Que peut-on attendre en 2009 avec un run à 10 TeV

Process	10 TeV	14 TeV
	σ_{NNLO}	σ_{NNLO}
$t\overline{t}$ ($m_t = 172.5$ GeV)	401.6 pb	883.9 pb
W + jets	665 pb	948 pb

Signal reduit de \backsim 50 % Bruit de fond reduit de \backsim 33 % Nous avons toujours un bon ratio S/B

En règle generale, le bruit de fond décroît moins que le signal :

- SM Higgs (200 GeV) reduit de \sim 50 %
- Z' (2 TeV) reduit de \backsim 30 %
- Sensibilité à la nouvelle Physique au-delà de 4 TeV reduite d'un ordre de grandeur.

La jet energy scale (JES)

Un jet est un objet composite qui résulte de l'hadronisation du quark.

Nombreuses sources d'incertitude sur la mesure d'énergie des quarks :

- Energie à l'extérieur du cône
- Matière morte dans le détecteur
- Bruit électronique ٠
- Hadronisation, FSR ٢
- Underlying events, pile-up, ... ۲

Canal tout hadronique

Pas d'analyses prévues dans ATLAS avec les premières données

Avantages :

- Beaucoup de statistique
- Evènement complètement reconstruit
- Recalibration *in-situ* des jets légers en utilisant la masse du boson W

Inconvénients :

- Enorme bruit de fond physique
- Enorme bruit de fond combinatoire

Principal bruit de fond : QCD

Canal dileptons

- 2 analyses prévues dès 2009 :
 - Eléments de matrice
 - 2 Templates
 - Avantages :
 - Signature propre
 faible bruit de fond
 - Faible combinatoire
 - *b*-tagging moins indispensable

Inconvénients :

- 2 ν s'échappent
- ⇒ cinématiquement sous contraint
- Faible statistique

Principaux bruits de fond : di-bosons, $t\bar{t}$ lepton+jets

Canal semi-leptonique

Le canal le plus prometteur pour 2009 "Golden channel"

Avantages :

- I lepton
- \implies réjection efficace du bdf QCD
- BR = 30 % ⇒ grande statistique
- Recalibration *In-situ* des jets légers grâce à la masse du boson *W*

Inconvénients :

- 1 ν s'échappe
 - \implies 2 solutions pour P_z^{ν}
- b-tagging requis pour diminuer le bruit de fond combinatoire

Principaux bruits de fond :

single top, $t\bar{t}$ dileptons, W+jets

Mesure de la masse du quark top dans le canal lepton $(e, \mu) + jets$

Tous les résultats présentés ici sont obtenus avec des échantillons Monte Carlo à 14 TeV et normalisés à 1 fb $^{-1}$

Sélection des évènements

Objectif : Maximiser le ratio S/B qui est très défavorable avant sélection

<u>Sélection standard :</u>

(toutes les particules ont $|\eta| \leqslant 2.5$)

- $= 1 \ \ell \ (e,\mu) \text{ isolé, } p_T \ge 20 \text{ GeV}$ $\implies \text{rejette bdf } t\overline{t} \text{ tout hadronique}$

Jets avec l'algorithme cone 04 :

- Solution = 2 b-tagged jets, $p_T ≥ 40 \text{ GeV}$ ⇒ rejette W, Z + jets

Number of events before and after

the selection cuts ($\mathcal{L} = 1 \text{ fb}^{-1}$).

Process	Before	After
	selection	selection
$t\overline{t}\;\ell(e,\mu)+jets$	313 200	15 780
<i>tt</i> di-leptons	52 500	720
$t\overline{t}$ all-jets	466 480	160
W background	$9.5 imes 10^5$	200
single top, t channel	81 500	330
single top, <i>W</i> t channel	9 590	170
single top, s channel	720	5
Z + partons	1.2 10 ⁶	20
WW, WZ, ZZ	29 700	2

• Après les coupures cinématiques : $S/B \simeq 10$

Le neutrino n'étant pas reconstruit dans le détecteur, on fait les hypothèses :

$$P_t^{\nu} = \not\!\!\! E_T$$

2 $M_W^{PDG} = M_{l\nu}$: \Rightarrow on obtient 2 solutions pour P_z^{ν}

On effectue ensuite une minimisation du χ^2 pour chaque combinaison possible de jets légers (*W* hadronique), d'assignation des jets *b* et pour chaque solution P_z^{ν} :

$$\begin{split} \chi^{2} &= \sum_{\substack{4jets + lepton}} \left(\frac{E^{mes} - E^{fit}}{\sigma_{E}}\right)^{2} + \left(\frac{M_{jj} - M_{W}^{PDG}}{\Gamma_{W}^{PDG}}\right)^{2} + \left(\frac{M_{l\nu} - M_{W}^{PDG}}{\Gamma_{W}^{PDG}}\right)^{2} \\ &+ \left(\frac{M_{jjb}_{had} - M_{top}^{fit}}{\sigma_{top_{had}}}\right)^{2} + \left(\frac{M_{l\nu b_{lept}} - M_{top}^{fit}}{\sigma_{top_{lept}}}\right)^{2} \end{split}$$

Pour chaque évènement, on sélectionne simultanément l'assignement des jets et la solution P_z^{ν} qui donne le plus petit χ^2 après minimisation.

Le fit cinématique permet une recalibration *in-situ* des jets légers en contraignant la masse invariante M_{jj} avec la masse du boson $W M_W^{PDG}$

Principe :

La distribution de masse reconstruite est corrélée, mais n'est pas identique, à la rélle distribution de masse du quark top, notamment à cause de la forte dépendance en la calibration des jets dans le détecteur. La méthode (*déjà utilisée au Tevatron*) consiste à comparer les distributions reconstruites à partir des données à des distributions obtenues à partir de Monte Carlo, appelées templates, pour mesurer simultanément la masse du quark top m_t et la jet energy scale JES.

Avantages :

- Réduit l'erreur systématique due à la JES puisque l'impact de la JES sur la modification de la distribution de masse reconstruite est pris en compte. L'erreur systématique restante résulte de la différence de calibration entre les jets légers et les jets b.
- Prend en compte tous les biais dus à la reconstruction tel celui dû à la coupure sur le P_T des jets.

Strategie :

On détermine la fonction de densité de probalité (p.d.f.) qui caractérise la probabilité de reconstruire une masse M_t^r étant donnée la vrai valeur m_t et la JES. On utilise une somme normalisée de 2 fonctions Gamma, qui fitent le bruit de fond combinatoire, et de 2 Gaussiennes qui fittent les évènements bien reconstruits.

La méthode des templates II : paramétrisation de m_t

Puisque les templates ne sont diponibles que pour des valeurs discrètes de m_t et JES, on paramétrise les p.d.f.'s en une fonction légèrement dépendante de la masse réelle m_t et de la JES afin d'extrapoler entre les templates. On suppose linéaire la dépendance des paramètres des p.d.f.'s en m_t et JES :

 $\alpha_i = p_i + p_{i+8}.JES + P_{i+16}.(m_t - 175)$

sauf α_1 (la pureté) qui est quadratique en JES et indépendant de m_t :

 $\alpha_1 = p_{25} + p_{26}.JES + p_{27}.JES^2.$

Le set complet de p.d.f.'s est ainsi complétement spécifié par 27 paramètres.

La méthode des templates III : paramétrisation de M_{ii}

La distribution de masse du boson W peut être fitée par une Gaussienne :

$$P_s(m_{jj}; JES) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(m_{jj}-\mu)^2}{2\sigma^2}}$$

mean

La largeur n'a pas de dépendance marquée en la JES $\Rightarrow \sigma$ est laissé libre dans le likelihood

On suppose qu'il n'y a pas de dépendance en la masse du top 🗉 🔖 📲 🕤

La méthode des templates IV : paramétrisation de lpha

Chacun des 2 facteurs de recalibration $\textit{in-situ} \ \alpha$ est fité par une Gaussienne :

La moyenne depend quadratiquement de la JES :

$$\alpha_i = p_0 + p_1.JES + p_2.JES^2$$

La largeur n'a pas de dépendance marquée en la JES $\Rightarrow \sigma$ est laissé libre dans le likelihood

La méthode des templates V : likelihood

Ensuite on compare les distributions reconstruites (à partie des données) aux templates en maximisant le likelihood donné par :

$$\mathcal{L} = \mathcal{L}_{shape}^{m_{t}^{reco}} \times \mathcal{L}_{shape}^{m_{jj}} \times \mathcal{L}_{shape}^{\alpha}$$

où
$$\mathcal{L}_{shape}^{M_{t}^{r}} = \prod_{i=1}^{N^{reco}} P_{s}(M_{t,i}^{r}; m_{t}; JES)$$

 $\mathcal{L}_{shape}^{m_{jj}} = \prod_{i=1}^{N^{reco}} P_{s}(m_{jj,i}; JES)$
et $\mathcal{L}_{shape}^{\alpha} = \prod_{i=1}^{N^{reco}} P_{s}(\alpha_{1}; \alpha_{2}; JES)$

Il est plus simple d'utiliser ln \mathcal{L} et puisqu'on effectue la maximization avec le package Minuit, on utilise – ln \mathcal{L} qui peut être minimisé avec MIGRAD.

La méthode des templates : Résultat

On fit la masse du quark top avec $m_t = 175$ GeV and JES = 1. ($\mathcal{L} = 850 pb^{-1}$) Le contour à s-deviations-standard est donné par m_t^s tel que $\ln \mathcal{L}(m_t^s) = ln\mathcal{L}_{max} - \frac{s^2}{2}$:

On obtient :

 $M_{top}^{fit} = 174.95 \pm 0.26 \text{ GeV}$ JES = 1.0002 ± 0.0021

La méthode des templates : Stabilité

L'analyse est faite pour 11 différentes valeurs de JES à m_t = 175 GeV :

 \blacktriangleright Les masses fitées sont compatibles avec 175 ${\rm GeV}$ et la JES fitée est linéaire en la JES MC

La méthode des templates : Bruit de fond

Quand on inclue le bruit de fond physique, le likelihood devient :

$$\mathcal{L} = \mathcal{L}_{shape}^{m_{t}^{reco}} \times \mathcal{L}_{shape}^{m_{jj}} \times \mathcal{L}_{\alpha} \times \mathcal{L}_{bkg}$$

où
$$\mathcal{L}_{shape}^{M_{t}^{r}} = \prod_{i=1}^{n_{s}+n_{b}} \frac{n_{s}P_{s}(M_{t,i}^{r}; m_{t}; JES) + n_{b}P_{b}(m_{t,i}^{r})}{n_{s}+n_{b}}$$

$$\mathcal{L}_{shape}^{m_{jj}} = \prod_{i=1}^{n_s + n_b} \frac{n_s P_s(m_{jj}; JES) + n_b P_b(m_{jj,i})}{n_s + n_b}$$

$$\mathcal{L}_{shape}^{\alpha} = \prod_{i=1}^{n_s + n_b} \frac{n_s P_s(\alpha_1; \alpha_2; JES) + n_b P_b(\alpha_1; \alpha_2)}{n_s + n_b}$$

$$et \quad \mathcal{L}_{bkg} = e^{-\frac{(n_b - n_b^0)^2}{2\sigma_{n_b}^2}}$$

Les paramètres libres sont m_t , la jet energy scale JES et le nombre d'évènements de signal attendu n_s qui est contraint par une densité de probabilité Gaussienne centrée en n_b^0 , le nombre d'évènements de bruit de fond attendus.

La méthode des templates : Résultat avec bdf

On fit la masse du quark top avec $m_t = 175$ GeV, JES = 1. Il y a 3877 évènements dont 520 évènements de bruit de fond attendus ($t\bar{t} \tau$ +jets, $t\bar{t}$ dileptons, single top, W+jets).

Incertitude systématique due aux b-tagged jets

La principale source d'erreur systématique provient de la différence de JES entre les *b*-tagged jets et les jets légers. Pour l'estimer, on répète l'analyse pour JES (jets légers) =1 et 11 valeurs de JES (b-tagged jets) de 0.9 à 1.1.

► L'erreur systématique due à JES (b-tagged jets) est 0.66 GeV par % de différence entre JES (jets légers) et JES (b-tagged jets)

27 / 36

- Le LHC sera une usine à top avec environ 80 000 000 de paires $t\bar{t}$ par an à haute luminosité.
- L'erreur statistique sur la mesure de la masse du quark top sera négligeable au LHC.
- La principale source de sytématique sera l'incertitude sur la JES.
- Une incertitude de 1 GeV devrait atteignable dès 1 fb⁻¹

A venir :

• Analyse avec la méthode des templates effectuée dans le canal dileptons

▶ reste à inclure le bruit de fond

• Etudier les systématiques pour combiner les 2 canaux et réduire l'erreur totale sur la mesure de la masse du quark top.

BACK-UP

Image: A matrix

3

Fit Alternatif (cross-check)

On peut également effectuer une maximisation du likelihood pour une seule variable M_{top} en imposant JES = 1.

On obtient :

 $M_{top}^{fit} = 174.97 \pm 0.26 \; {
m GeV}$

Le résultat est consistent avec le précédent.

On peut estimer la contribution de l'erreur statistique et l'incertitude due à la JES en utilisant : $\sigma_{tot}^2 = \sigma_{stat}^2 + \sigma_{JES}^2$.

L'erreur totale est obtenue en calculant l'écart maximal entre la masse la plus probable et les masses les moins probables à 1σ .

 $\sigma_{tot} = 0.34 \text{ GeV} \implies \qquad \sigma_{stat} = 0.26 \text{ GeV}$ $\sigma_{JES} = 0.22 \text{ GeV}$ $\sigma_{JES} = 0.22 \text{ GeV}$

Distributions de pool

On plot les distributions en fixant alternativement M_{top} et JES, sans bruit de fond (1000 pseudo-expériences de 1000 évènements).

Commissionning analysis

On relache la coupure sur le b-tagging pour augmenter l'efficacité avec les premières données. On effectue la sélection :

- 2 *b*-tagged jets $+ \ge 2$ jets légers
- 1 b-tagged jets + ≥ 3 jets légers
- 0 *b*-tagged jets $+ \ge 4$ jets légers

Initial and final state radiations (ISR/FSR)

Plusieurs échantillons ont été simulé pour cette étude (AcerMC $t\bar{t}$), correspondant à différents sets de paramètres :

- Sample 1 : $\Lambda(QCD)_{ISR} * 2$, $\Lambda(QCD)_{FSR} * 0.5$: masse reconstruite maximale
- Sample 2 : Avec les paramètres de ISR et FSR par défaut.
- Sample 3 : $\Lambda(QCD)_{ISR} * 0.5$, $\Lambda(QCD)_{FSR} * 2$: masse reconstruite minimale

On obtient une uncertitude de 0.4 GeV qui correspond à la moitié de l'écart observé entre les 2 échantillons avec les valeurx extrèmes de ISR/FSR.

Les paramètres de ISR et FSR seront déterminés avec les données pour réduire cette incertitude systématique.

Antoine Marzin (CEA-Saclay) Mesure de la masse du quark top avec A⁻ 1^{er} décembre 2008 33 / 36

Le canal dileptons

On utilise la densité de probabilité suivante :

 $P_s(M_t^r; m_t) = 0.3 \frac{\alpha_2^{1+\alpha_1}}{\Gamma(1+\alpha_1)} (M_t^r - 100)^{\alpha_1} e^{-\alpha_2 (M_t^r - 100)} + 0.7 \frac{1}{\alpha_3 \sqrt{2\pi}} e^{-\frac{(M_t^r - \alpha_4)^2}{2\alpha_3^2}}$

et une paramétrisation quadratique en m_t :

 $\alpha_i = p_i + p_{i+4}m_t + p_{i+8}m_t^2.$

Pour $m_t^{MC} = 175 \text{ GeV}$ on obtient $m_t = 174.99 \pm 0.98 \text{ GeV}$.

34 / 36

Combinaison des 2 canaux : principe

On veut combiner la mesure de la masse du quark top effectuée avec :

- Le canal ℓ +jets : $m_t^a \pm S^a$
- 2 Le canal dileptons : $m_t^b \pm S^b$

On définit la matrice de covariance : $S = \begin{pmatrix} (S^a)^2 & \rho S^a S^b \\ \rho S^a S^b & (S^b)^2 \end{pmatrix}$

où ρ est le coefficient de corrélation entre les erreurs totales S^a et S^b :

$$\rho = \frac{\sum_{i=1}^{n} \rho_i y_i^a y_i^b}{S^a S^b}, \quad (n \text{ sources de syst. } y_i).$$

La valeur la plus probable $< m_t >$ est obtenue en minimisant le χ^2 :

$$\chi^2 = \mathcal{Q}^t S^{-1} \mathcal{Q}$$

Avec $\mathcal{Q} = \left(\begin{array}{c} < m_t > -m_t^a \\ < m_t > -m_t^b \end{array} \right)$

Combinaison des 2 canaux : exemple

Q canal ℓ +jets : $m_t^a = 174.95 \pm 0.9$ (syst.) ± 0.26 (stat.)

② canal dileptons : $m_t^b = 174.99 \pm 0.86$ (syst.) ± 0.95 (stat.)

Le détail des erreurs est indiqué dans le tableau avec les coefficients de corrélation.

Erreur	ℓ + jets	dileptons	corrélation
Systématique			
b JES	0.66	0.7	1
light JES	0.22	0	0
ISR/FSR	0.4	0.3	1
Méthode	0.4	0.4	0
statistique	0.26	0.95	0

En appliquant la méthode explicitée ci-dessus, on obtient :

 $< m_t > = 174.96 \pm 0.79 \text{ GeV}$

qui peut se décomposer comme :

 $< m_t > = 174.96 \pm 0.71 \text{ (syst.)} \pm 0.34 \text{ (stat.)} ext{GeV}$

36 / 36