$H \rightarrow \gamma \gamma$ dans le détecteur ATLAS au LHC

Jean-François MARCHAND

Laboratoire d'Annecy-le-Vieux de Physique des Particules

Journées Jeunes Chercheurs - 03/12/2008

Introduction

• $H \rightarrow \gamma \gamma$ est l'un des canaux de découverte les plus prometteurs pour un boson de Higgs du MS dans la région de basse masse (114 < $m_{\rm H}$ < 150GeV)

- Petit rapport de branchement ($\approx 2.2 \cdot 10^{-3}$ pour $m_H = 120 \text{GeV}$)
- Signature simple
- Très bonne résolution en masse (≈1.5GeV)

 \rightarrow Nécessite une bonne reconstruction-identification des photons

- \rightarrow Bonne manipulation des conversions
- \rightarrow Bonne mesure de la direction des photons

• Corrections QCD d'ordre supérieur considérées pour signal et bruit de fond

- Contribution de la fragmentation des partons durs en photons prise en compte
- Analyse inclusive et production de 2 photons en association avec des jets
- Signification statistique : fit de max. de likelihood vs comptage d'évènements
- Etudes basées sur une simulation MC réalistique du détecteur

Signal et bruit de fond

Le détecteur ATLAS

Reconstruction et identification des photons

Reconstruction et calibration

- En partant de clusters EM (Barrel : 3×7 en $\eta \times \phi$ pour photons convertis, 3×5 pour les photons non convertis, EndCap : 5×5)
- Position des clusters corrigée pour les biais systématiques connus
- Energie reconstruite en utilisant des poids longitudinaux pour corriger : → Pertes d'énergie devant le calorimètre
 - \rightarrow Fuites longitudinal
 - → Pertes d'énergie en dehors du cluster
- Des poids différents sont appliqués pour les photons convertis et non convertis

Identification et isolation

- Pour réduire le bruit de fond des jets en dessous du bruit de fond irréductible
- Identification utilisant des coupures (sur la forme des gerbes EM)
 - \rightarrow Second compartiment et calorimètre hadronique : Réjection des jets par large gerbes
 - ightarrow Segmentation fine du premier compartiment : Séparation γ/π^0
- Isolation (utilisant les traces)

Reconstruction des conversions

• Etudes Monte Carlo :

 \rightarrow 57% des $H\rightarrow\gamma\gamma$ avec \geq 1 conversion avec $R_{\rm conv}<$ 800mm (qui correspond \approx au dernier point où l'on peut espérer reconstruire une trace)

 \rightarrow 35% des $H\rightarrow\gamma\gamma$ avec \geq 1 conversion avec $R_{\rm conv}<$ 350mm (Reconstructibles avec la version du software utilisé)

Reconstruction des conversions

• 2 types de photons convertis sont utilisés :

Conversions à deux traces

 \rightarrow Reconstruites par un algorithme de vertexing utilisant 2 traces de charges opposées

Conversions à une trace

 \rightarrow Une des 2 traces non reconstruite par le détecteur ou échec de vertexing

 \rightarrow Séparation électrons primaires / électrons de conversion par le signal dans la première couche de pixel

• Efficacité de reconstruction $\approx 66.4\%$ pour conversions avec $R_{conv} < 400$ mm

⇒ Ajouter les photons convertis permet de gagner $\approx 21\%$ d'évènements $H \rightarrow \gamma \gamma$ $\rightarrow \approx 14\%$ de conversions à 2 traces $\rightarrow \approx 7\%$ de conversions à 1 trace

Pointing - Vertex primaire

Fit linéaire utilisant :

- Mesure précise de la position du vertex primaire très importante pour améliorer la résolution en masse du Higgs
- Méthode itérative pour mesurer la direction des photons

▲ R

middle

strips

Masse invariante et résolution

• Résolution en masse déterminée par fit Gaussien assymétrique $([-2\sigma, +3\sigma])$

- Décalage en masse dû aux photons convertis
- La résolution en masse relative σ_m/m est proche de 1.2% et dégradée de quelques % quand on ajoute du pile-up 10^{33} cm⁻²s⁻¹

JF Marchand (LAPP)

Analyse inclusive

- $0 < |\eta| < 1.37$, $1.52 < |\eta| < 2.37$ (motivés par l'identification offline des photons) \Rightarrow Aussi utilisé pour les analyses H+1jet et H+2jets
- $p_T^{\gamma_1} > 40 \text{GeV}, \ p_T^{\gamma_2} > 25 \text{GeV}$ (obtenus par des études d'optimisation)

Sections efficaces attendues :

σ_{signal}	25.4 fb
$\sigma_{ m background}$	947 fb

dans une fenêtre de masse $m_{\gamma\gamma}\pm 1.4\sigma$

S/B = 0.02

K-facteur appliqué :
$$K_{\gamma j} = 2.1$$
 et $K_{jj} = 1.3$

JF Marchand (LAPP)

Analyse H+1jet

Le jet principal dans $gg\to H\!j$ et VBF tend à être plus dur et mieux séparé de $\gamma\gamma$ que pour le bruit de fond

- $p_T^{\gamma_1} > 45 \text{GeV}, \ p_T^{\gamma_2} > 25 \text{GeV}$
- ≥ 1 jet hadronique avec $\rho_T^{\text{jet}} > 20 \text{GeV}$ en $|\eta| < 5$ (motivé par les possibilités de calibration des jets hadroniques dans ATLAS)
- $m_{\gamma\gamma \text{jet}} > 350 \text{GeV}$

Analyse H+2jets

- $p_T^{\gamma_1} > 50 \text{GeV}, \ p_T^{\gamma_2} > 25 \text{GeV}$
- \geq 2 jets hadroniques avec $p_T^{jet_1}$ > 40GeV, $p_T^{jet_2}$ > 20GeV avec $|\eta|$ < 5
- Jets dos à dos : $\eta_1\eta_2 < 0$ (au LO, le processus VBF produit 2 jets de grand p_T et vers l'avant dans les hémisphères opposés)
- $\Delta \eta_{jj} > 3.6$
- *m_{jj}* > 500GeV
- Photons entre les jets

JF Marchand (LAPP)

• Veto sur jet central : $p_T > 20 {
m GeV}$, $|\eta| < 3.2$

Analyse H+2jets

- $p_T^{\gamma_1} > 50 \text{GeV}, \ p_T^{\gamma_2} > 25 \text{GeV}$
- \geq 2 jets hadroniques avec $p_T^{
 m jet_1}$ > 40GeV, $p_T^{
 m jet_2}$ > 20GeV avec $|\eta|$ < 5
- Jets dos à dos : $\eta_1\eta_2 < 0$ (au LO, le processus VBF produit 2 jets de grand p_T et vers l'avant dans les hémisphères opposés)
- $\Delta \eta_{jj} > 3.6$
- *m_{jj}* > 500GeV
- Photons entre les jets
- Veto sur jet central : $p_T > 20 {
 m GeV}$, $|\eta| < 3.2$

Principalement VBF

Sections efficaces attendues :

	Inclusive	H+1jet	H+2jets
σ_{sig}	25.4 fb	4.0 fb	0.97 fb
$\sigma_{\sf bkg}$	947 fb	49 fb	1.95 fb

dans une fenêtre de masse

$$m_{\gamma\gamma} = 120 \pm 2 \text{GeV}$$

S/B = 0.5

Analyse inclusive, H+1jet, H+2jets - Résumé

S	ecti	ons	effic	aces	attend	lues	:
_							_

		Inclusive	H+1jet	H+2jets
ſ	$\sigma_{\sf sig}$	25.4 fb	4.0 fb	0.97 fb
$\sigma_{\rm bkg}$ 947 fb		49 fb	1.95 fb	

Maximum-likelihood fit

• Fit multivariable du max. likelihood

 \to Utilise les informations discriminantes des propriétés cinématiques et topologiques de $H\to\gamma\gamma$

JF Marchand (LAPP)

Maximum-likelihood fit

Utilisation de catégories pour séparer les données en plusieurs parties

- Sépare des sous-populations d'évènements avec des propriétés différentes
- Les differentes catégories peuvent avoir des valeurs de PDF différentes
- Donne une description fine des données / Réduit les biais de corrélation
 - \Rightarrow Augmente la précision du modèle de likelihood

- 3 catégories en η
- catégories pour photons convertis/non-convertis
- 3 catégories de production du Higgs : H + 0, 1, 2 jets

Potentiel de découverte

• Signification statistique attendue pour 10 fb^{-1} de luminosité integrée (dans une fenêtre de masse $\pm 1.4\sigma$ autour de m_H)

Avec comptage d'évènements

m_H (GeV)	Inclusive	H + 1 jet	H + 2 jets	Combiné
120	2.6	1.8	1.9	3.3
130	2.8	2.0	2.1	3.5
140	2.5	1.8	1.7	3.0

 \Rightarrow Signification combinée ${\approx}25\%$ plus grande que celle obtenue par l'analyse inclusive

Conclusion

- L'analyse combinée de H+0jet, H+1jet et H+2jets augmente la signification statistique de ${\approx}25\%$ par rapport à l'analyse inclusive
- L'utilisation d'un fit de maximum de likelihood a été étudiée pour augmenter la sensibilité
 ⇒ Augmente la signification statistique de ≈ 40% par rapport à l'analyse inclusive
- Une découverte à 5σ devraient être possible avec une luminosité integrée de 20-30 \textit{fb}^{-1}
- Beaucoup d'améliorations ont été faites depuis les études précédentes... et beaucoup sont toujours en cours (conversions, pointing, isolation...)

⇒ Et bien sûr : du travail sera nécessaire pour comprendre les performances du détecteur avec les premières données...

BACKUP

Masse invariante et conversions

JF Marchand (LAPP)

- Clusters 3×7 en $\eta \times \phi$ sont utilisés pour les photons convertis
- Ouverture en ϕ des paires électron/positron de conversions
- Perte d'énergie augmente avec $\Delta \phi$, puis re-diminue pour des conversions très assymétriques

JJC 08 - $H \rightarrow \gamma \gamma$ dans ATLAS - 03/12/2008

- $\bullet~$ L1 menu : 2EM13I $\rightarrow \geq$ 2 isolated electron or photon candidates with $E_T=13 GeV$
- L2 and EF : 2g17i Refine the analysis of L1

Efficiency for the 2g17i menu item to trigger on $H \rightarrow \gamma \gamma$ events with $m_H = 120 \text{GeV}$ -Normalized with respect to the offline selection

Trigger Level	2g17i Trigger efficiency
L1	96±0.3
L2 Calo	95±0.4
EF Calo	94±0.4

- Efficiency loss mainly due to the calorimeter isolation at L1 which is not applied in the offline photon selection
- 2g17i should be usable upt to luminosities of 10^{33} cm⁻²s⁻¹

MC event generation

Signal

- Events generated using PYTHIA : LO matrix element calculation for all processes
- MC@NLO also used to simulate gluon fusion process
- HERWIG also used to model VBF process

 \Rightarrow Full detector simulation used All generated samples used for signal are normalized to the NLO cross-sections taking into account only QCD corrections

Background

Process	σ calculator Cuts		σ (pb)	Full simulation # of events	Fast simulation # of events
$q\bar{q},qg \rightarrow \gamma\gamma x$	ReBos/ DIPHOX	$80 < m_{\gamma\gamma} < 150 { m GeV}$ $ ho_{T\gamma} > 25 { m GeV}, \eta < 2.5$	20.9	PYTHIA/ALPGEN 200000/1300000	ALPGEN 1670000
$gg \rightarrow \gamma \gamma$	ReBos	$80 < m_{\gamma\gamma} < 150 { m GeV}$ $p_{T\gamma} > 25 { m GeV}, \eta < 2.5$	8.0	PYTHIA 200000	PYTHIA 850000
γj	JETPHOX	$p_{T\gamma} > 25 { m GeV}$	180 · 10 ³	PYTHIA 3000000	ALPGEN 36700000
jj	NLOJET++	$P_{T\gamma} > 25 { m GeV}$	477 · 10 ⁶	PYTHIA 10000000	ALPGEN 37000000

Discriminating variables for H+1, 2 jets analysis

Fit - Fitter used

Hfitter Performs unbinned extended maximum likelihood fits, arbitrary number of samples, categories and fit variables (based on RooFit)

Likelihood :
$$L = \prod_{c=1}^{n_{\text{cat}}} e^{-\overline{N}^c} \prod_{i=1}^{N^c} P_i^c$$

with
$$P_i^c = N_H f_H^c P_{H,i}^c + \sum_{j=1}^{n_{\text{bkg}}} N_{B_j}^c P_{B_j,i}^c$$
 and $P_{U_j,i}^c = \prod_{k=1}^{n_{\text{var}}} p_U^c(\mathbf{x}_{k,i})$ where $U = H, B_j$

$$\begin{array}{l} & N_{H}: \text{total number of } H \to \gamma\gamma \text{ events in sample sample} \\ c: \text{category with distinct properties } (\eta, p_T \text{ region, production mechanism...})} \\ f_{L}^{G}: \text{fraction of signal events in category } c \\ & N_{B_j}^{C}: \text{number of background event of type } j \text{ in category } c \\ & \overline{N}^{C}: \text{number of background types } \gamma/\text{jet}, 2\gamma+\text{jet}, \text{ di-jet}, \dots \\ & p_{U}(x_{k,j}): \text{ probability density for event } i \text{ in category } c \text{ of type } U \\ & \text{ for dscriminant variable } x_k \end{array}$$

Calorimeter granularity

	Cells in Layer 3 q = 0 $real production (Layer 1)$ re						
	$ \eta $ range	Cell 1	η size	Cell o	∮ size		
		Layer 1	Layer 2	Layer 1	Layer 2		
Barrel	0-1.4	0.025/8	0.025	0.1	0.025		
	1.4-1.475	0.025	0.075	0.1	0.025		
EndCap	1.375-1.425	0.05	0.05	0.1	0.025		
	1.425-1.5	0.025	0.025	0.1	0.025		
	1.5-1.8	0.025/8	0.025	0.1	0.025		
	1.8-2.0	0.025/6	0.025	0.1	0.025		
	2.0-2.4	0.025/4	0.025	0.1	0.025		
	2.4-2.5	0.025	0.025	0.1	0.025		

Granularity of layer 3 : $\Delta \eta \times \Delta \phi = 0.050 \times 0.025$

$H+E_T^{miss}$ and H+1 lepton from associated production

$H+E_T^{miss}+1$ lepton

- Signal : Mainly from $WH \rightarrow \ell \nu \gamma \gamma$ and $t \overline{t} H$
- Background : Mainly from $t\bar{t}\gamma\gamma$, $W\gamma\gamma$ where W decays to $\ell\nu$ and $W\gamma \rightarrow e\nu\gamma$ where the other photon is radiated by the electron or is a jet faking photon

$$H + E_T^{miss}$$

- Signal : Mainly from $ZH \rightarrow \nu \nu \gamma \gamma$
- Background : Mainly from $t\bar{t}\gamma\gamma$, $Z\gamma\gamma$ and $W\gamma \rightarrow e\nu\gamma$ where the other photon is radiated by the electron or is a jet faking photon

Reminder: a Monte-Carlo generator in one figure

7) Hadronization Matrix elements (ME): Parton Showers (PS): 5) Multiple parton-parton interactions. 1) Hard subprocess: 3) Final-state parton showers. $|\mathcal{M}|^2$, Breit-Wigners, 0000 $\rightarrow aa$ parton densities. $\rightarrow aa$ ā $\rightarrow a\overline{a}$ → qh a 6) Beam remnants, 2) Resonance decays: 4) Initial-state parton showers. with colour connections. includes correlations. 8) Ordinary decays: 0000 hadronic, τ , charm, ...

5) + 6) = Underlying Event

Sjöstrand's lecture, IPPP Durham 2006