ALFA

Absolute Luminosity For ATLAS Mesure de la luminosité absolue pour l'expérience ATLAS et de la section efficace totale proton-proton

M. HELLER heller@lal.in2p3.fr Directeur de thèse: P. PUZO

LAL-Orsay JJC 2008

01-06/12/2008

M. HELLER (LAL-Orsay)

- 2 Description du détecteur ALFA
- 3 Simulation des événements ALFA
- 4 Faisceau-test au CERN, août 2008

1 Introduction

- 2 Description du détecteur ALFA
- 3 Simulation des événements ALFA
- 4 Faisceau-test au CERN, août 2008

Caractéristiques de la machine

- Collisions proton-proton
- 27 km de circonférence
- 4 expériences majeures (ALICE, ATLAS, CMS, LHCb)
- 9593 aimants supraconducteurs à 1.9 K dont 1232 dipoles à 8.3 T

Caractéristiques nominales du faisceau

- Luminosité instantanée : Nb d'interactions par cm² et par seconde.
- Elle dépend des paramètres du faisceau comme suit :

$$L = \frac{N^2 f_{rev} n_b}{4\pi\sigma^2}$$

- N: Nombre de particule par paquet
- f_{rev} : Fréquence de révolution
- n_b : Nombre de paquets circulant dans la machine
- σ : Largeur du faisceau

Pourquoi?

On souhaite mesurer $\sigma = \frac{N}{L}$

- On cherche à déterminer une section efficace
- Le détecteur nous fournit N
- mesurer $\sigma \Leftrightarrow$ mesurer L

Comment?

Dans ATLAS, deux détecteurs dédiés :

- ALFA : mesure de luminosité absolue mais pas avec optique de collision.
- LUCID : mesure de luminosité paquet par paquet, avec optique de collision, mais de manière relative.

⇒ Solution : ALFA mesurera la luminosité absolue avec une précision de 2-3 % lors de runs spéciaux effectués en parallèle avec LUCID et ainsi permettra sa calibration. Ce dernier sera utilisé pendant toute la durée de fonctionnement du LHC.

LUCID, LUminosity measurement using Cerenkov Integrating Detector

Principe

- Evénements inélastiques interceptés pour 5.5≤ |η| ≤6.1
- Nombres de particules chargées détectées ∝ luminosité
- Extrapolation de la mesure à basse luminosité grâce à une linéarité quasi-parfaite

M. HELLER (LAL-Orsay)

Utiliser un mécanisme dont la section efficace est bien connue et peut être calculée : Diffusion élastique des protons au point d'intéraction. On peut exprimer la luminosité L en fonction de la section efficace différentielle élastique comme suit :

 σ_{tot} , B et ρ trois paramètres hadroniques (paramètres libres du fit)

<u>II</u> š

M. HELLER (LAL-Orsay)

Utiliser un mécanisme dont la section efficace est bien connue et peut être calculée : Diffusion élastique des protons au point d'intéraction. On peut exprimer la luminosité L en fonction de la section efficace différentielle élastique comme suit :

 σ_{tot} , B et ρ trois paramètres hadroniques (paramètres libres du fit)

<u>11 s</u>

M. HELLER (LAL-Orsay)

Utiliser un mécanisme dont la section efficace est bien connue et peut être calculée : Diffusion élastique des protons au point d'intéraction. On peut exprimer la luminosité L en fonction de la section efficace différentielle élastique comme suit :

 σ_{tot} , B et ρ trois paramètres hadroniques (paramètres libres du fit)

<u>11 s</u>

M. HELLER (LAL-Orsay)

Utiliser un mécanisme dont la section efficace est bien connue et peut être calculée : Diffusion élastique des protons au point d'intéraction. On peut exprimer la luminosité L en fonction de la section efficace différentielle élastique comme suit :

 σ_{tot} , B et ρ trois paramètres hadroniques (paramètres libres du fit)

<u>11 s</u>

M. HELLER (LAL-Orsay)

Utiliser un mécanisme dont la section efficace est bien connue et peut être calculée : Diffusion élastique des protons au point d'intéraction. On peut exprimer la luminosité L en fonction de la section efficace différentielle élastique comme suit :

 σ_{tot} , B et ρ trois paramètres hadroniques (paramètres libres du fit)

<u>11 s</u>

M. HELLER (LAL-Orsay)

Choix du détecteur : contraintes de l'expérience

- Mesure \Leftrightarrow comptage des protons diffusés en fonction de $|t| = (p\theta)^2$ i.e. de l'angle de diffusion.
- Ne pouvant pas intercepter les protons avant le premier quadrupole (Q1), il faut placer le détecteur plus loin dans la partie avant... là oú il y a de la place (240 m).
- Solution : Optique qui pour un même angle de diffusion donne une même position transverse dans le détecteur :

"Parallel to point focusing"

Pour obtenir la précision souhaitée, nous devons atteindre la région coulombienne ($\theta \approx 3\mu$ rad).

A 240 m, 3 μ rad $\Leftrightarrow \approx 1.5$ mm du centre du faisceau.

Afin d'intercepter de si petits angles il faut :

- avoir une optique spéciale qui permet :
 - d'étaler le faisceau dans le plan transverse
 - de minimiser la divergence angulaire au point d'intéraction $(\sigma_{\theta} \circ \theta_{diffusion})$
- de fonctionner sans angle de croisement
 - \Rightarrow moins de paquets dans la machine (2808 \rightarrow 43)
 - \Rightarrow BC plus long (25 ns \rightarrow 2 μ s)

Position des détecteurs sur l'anneau

Introduction

2 Description du détecteur ALFA

3 Simulation des événements ALFA

4 Faisceau-test au CERN, août 2008

Position garage

Position prise de données

M. HELLER (LAL-Orsay)

Electronique d'acquisition

La PMF : PhotoMultiplier Front end electronics

Montée sur le dos d'un MAPMT (Multi Anode Photomultiplicateur Tube) 64 canaux. Elle se compose de :

- une carte pour apporter la haute tension au MAPMT (HT)
- une carte intermédiaire pour distribuer les signaux (passive)
- une carte qui traite le signal, le discrimine et fournit 64 sorties trigger (active)

Côté MAROC

3 cm

Côté Lattice

Tests et performances

Performances

Objectifs :

- 100 % d'efficacité de détection
 - ⇒ 100 % d'efficacité de déclenchement pour l'électronique.
- Réponse uniforme de chacun des canaux
 - ⇒ Correction de la non-uniformité des gains du MAPMT.
- Déclenchement d'un seul canal par plan pour le passage d'une particule
 - \Rightarrow Diaphonie de l'ordre de 2-3 %.

Enjeux

Signal élevé à l'entrée de l'électronique $\Rightarrow \uparrow$ probabilité d'induire du signal dans les canaux voisins $\Rightarrow \uparrow$ risque de mauvaise reconstruction des traces.

Cross talk value with Vdiode = 2.5 V											
	2	12.8	2.1	6.8							
	10.8	100	17.6	11.4							
	2.2	9.7	2.2								

Exemple avec des tests réalisés au CERN

La diaphonie induite dans les connecteurs situés sur la PMF s'ajoute à celle observée sur le MAPMT. Confusion entre canal réellement touché et canal induit.

Importance de la diaphonie : exemple d'étude

Cross talk value with Vdiode = 2.5 V observed for black connectors

Cross talk value with Vdiode = 2.5 V

2	12.8	2.1	6.8		
10.8	100	17.6	11.4		
2.2	9.7	2.2			

Introduction

- 2 Description du détecteur ALFA
- 3 Simulation des événements ALFA

4 Faisceau-test au CERN, août 2008

Simulation des événements élastiques

Génération avec Pythia

- Générer les événements élastiques.
- On peut simuler la largeur du faisceau, la divergence angulaire ainsi que la dispersion en énergie.
- La génération s'effectue pour $\theta=1 \rightarrow 50 \mu rad.$

Transport avec MadX

- Les protons élastiques sont transportés à travers l'optique du LHC jusqu'aux détecteurs.
- Les seules variables utiles au niveau des Pots Romains sont la position et l'angle de la particule.

Spectre généré avec Pythia

Figure de diffusion élastique au niveau des Pots Romains

Reconstruction des événements

Reconstruction des événements

Le spectre intercepté est :

- reconstruit en utilisant les deux bras de détection
- corrigé en utilisant l'acceptance globale

Ajustement et systématiques

1M d'événements

1 semaine de run : 10M d'evts Erreur statistique sur $L :\approx$ 1 %

Principales contributions aux systématiques

- Connaissance des paramètres du faisceau et intégration dans la simulation.
- Compréhension du bruit de fond :
 - machine : Betatron et Momentun cleaning, halo, beam gas
 - physique : Diffraction simple

h:

Introduction

- 2 Description du détecteur ALFA
- 3 Simulation des événements ALFA

Faisceau-test au CERN, août 2008

Objectifs

- Tester un prototype complet (20 plans de 64 fibres chacun)
- ٠ Tester l'électronique (Carte mère, PMF, HT...)
- ۰ Caractériser le détecteur (Efficacité, résolution spatiale, diaphonie...)

Pot Romain complet

Fibres scintillantes sur leur support

Matrice des PMF

Présentation du dispositif

Résultat obtenu sans soustraction de la résolution du télescope et avec 6 plans au lieu de 20. Une extrapolation donne un résultat proche de 30 μ m.

Mesure très "challenging" ! !

- L'analyse des systématiques a montré la possibilité d'atteindre un précision absolue de 2-3 %
- Travailler dans un tel environnement rend les contraintes matérielles très sévères.
- l'électronique frontale a été validée et la production en série est lancée.
- les premiers résultats du dernier test-faisceau sont satisfaisants et en accord avec le "Technical Design Report".
- Les Pots Romains devraient être installés au prochain arrêt du LHC..., mais attendons déjà son redémarrage !!

Merci pour votre attention, et merci aux organisateurs !!

Alvarez Proton Linac

Comment's series

Energie d'extraction 50 MeV

Energie d'extraction 1.4 GeV

LINAC 2

Synchrotron à protons

Energie d'extraction 25 GeV

M. HELLER (LAL-Orsay)

PS

Supersynchrotron à protons

Energie d'extraction 450 GeV

- Evénements inélastiques interceptés pour 5.5 ≤ |η| ≤6.1
- Nombres de particules chargées détectées
 x luminosité.
- Extrapolation de la mesure à basse luminosité grâce à une linéarité quasi-parfaite :

 $\dot{N} =$ (Nb d'interaction p-p détectées par croisements μ_{LUCID}) × (facteur de remplissage f_{BC})

Et finalement, $L = \frac{f_{BC}}{\sigma_{nn} \epsilon_{IJICID}} \mu_{LUCID}$

On doit donc déterminer μ_{LUCID} à différentes valeurs de luminosité :

- Basse : Nombre de croisement sans détection
- Moyenne : Nombre de tube enregistrant du signal
- Haute : Nombre de particules chargées détectées

Dfinition

Grâce à l'optique spèciale nous avons :

$$\theta_{RP_{1,y}} = \frac{y_{RP_1}}{L_{eff_1}}$$

Si l'on considère les quatre Pots Romains pour la reconstruction on peut écrire pour l'axe y :

$$\theta_{RP_{1,y}} = \frac{\frac{y_{RP_1}}{L_{eff_{1,y}}} + \frac{y_{RP_3}}{L_{eff_{3,y}}}}{2} \qquad \theta_{RP_{2,y}} = \frac{\frac{y_{RP_2}}{L_{eff_{2,y}}} + \frac{y_{RP_4}}{L_{eff_{4,y}}}}{2}$$

avec :

$$L_{eff_{1,X}} = \sqrt{(\beta_{1,X}\beta^*)}\sin(\psi_{1,X})$$

On obtient :

$$\theta_y^2 = \theta_{1,y}^2 + \theta_{2,y}^2 + \left|\theta_{1,y}^2 \times \theta_{2,y}^2\right|$$

Et finalement :

$$t_{reconstruit} = \frac{\left(\theta_x^2 + \theta_y^2\right) \times \left(7 \ TeV\right)^2}{4}$$

