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‣ The indirect search of new physics through quantum loop effect: very 
powerful tool to search for new physics signal! 

‣ Despite of our expectations, a significant deviation from SM has not been 
observed so far.  ➫ A proposition of new observable is called for! 

Flavour Physics beyond SM

 Mass scale of new physics  
δi/M2 

FCNC

‣ The b ➔sγ process is a good probe of 
fundamental properties of SM as well as of beyond 
SM. 

‣ However, the polarization of b ➔s γ has never 
been confirmed at a high precision ➫ important 
challenges for LHCb/Belle II !

‣ Direct CP violation in b ➔s γ is an important null 
test of BSM. ➫ new challenges for LHCb/Belle II !
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The b→sγ process is produced by magnetic operator with “a 
particular Dirac structure” in SM:  
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L
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mbs̄LσµνqνbR mss̄RσµνqνbL In the SM, the 
opposite chirality 
is suppressed by 

ms/mb

The photon polarization of b→sγ

✴ However, this left-handedness has never been confirmed 
experimentally at a high precision !

✴ Possible large new physics effect due to “chiral enhancement” !!

! b ➔s γL (left-handed polarization)
! b ➔s γR (right-handed polarization)
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Example: Left-Right Symmetric Model

CKM matrix. In section 3 and 4, we describe the b → sγ and meson mixings in LRSM.
We show our numerical results in section 5 and we conclude in section 6.

2 Left-Right Symmetric Model

The Left-Right Symmetric Model (LRSM) is based on the extended gauge group SU(2)L×
SU(2)R × U(1)Ỹ which involves additional charged and neutral gauge bosons [12]. The
electric charge can be also extended as Q = TL3+TR3+ Ỹ . Then, for the ordinary quarks
and leptons, the hypercharge gets a physical meaning, i.e. Ỹ = (B − L)/2 in this model.
The Lagrangian of LRSM is symmetric under parity, which is broken only spontaneously
by the non-zero vacuum expectation values of Higgs fields as shown in the following.

The left-handed fermions are SU(2)L doublets and SU(2)R singlets as in the SM while
the right-handed fermions are SU(2)R doublets and SU(2)L singlets. Thus, the charge
assignments (TL3, TR3, Ỹ ) of fermions yields:
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The symmetry is spontaneously broken in two steps

SU(2)L × SU(2)R × U(1)Ỹ → SU(2)L × U(1)Y → U(1)EM. (3)

The first step SU(2)R × U(1)Ỹ → U(1)Y is parity and B − L violating while the second
step is equivalent to the electroweak symmetry breaking. Let us first see the scalar
multiplet Φ, which triggers the second step symmetry breaking. Consulting the Yukawa
interaction of the form, QLΦQR, Φ should be a 2×2 unitary matrix. Moreover, this term
to be invariant under SU(2) transformation requires Φ to be bi-doublet scalar fields with
charge assignment:

Φ ≡
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The Φ field can not trigger the first step symmetry breaking because (i), Φ couples to
both of SU(2)L and SU(2)R and does not distinguish these two groups. Therefore Φ could
not break parity. (ii) Φ does not couple to U(1)Ỹ which would be unbroken and would
leave a massless gauge boson which is not observed. Thus, we must introduce another
scalar multiplets to break parity, namely the SU(2)R, and also U(1)Ỹ . In particular, the
scalar multiplet with charge B − L = 2 is attractive since it can generate right-handed
Majorana neutrino masses. As a result, we introduce the scalar triplet:
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∼ (0, 1, 2) ,
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Note that in this model another scalar field ∆L is also introduced in order to ensure the
parity conservation at a high energy before the symmetry is broken.

Now the symmetry breaking (3) can be undertaken by the non-zero vacuum expecta-
tion values (VEV). It is known that two of four complex phases can be eliminated and
remaining two phases are assigned conventionally to the VEV of Φ, ∆L and ∆R [6]:

〈Φ〉 =
(

κ 0
0 κ′eiω

)
, 〈∆L〉 =

(
0 0

vLeiθL 0

)
, 〈∆R〉 =

(
0 0
vR 0

)
, (5)

where, vL,R,κ and κ′ are real numbers. The symmetry breaking of SU(2)R × U(1)Ỹ →
U(1)Y is achieved at a high scale, i.e. multi-TeV, by non-zero 〈∆R〉. If vL %= vR, the left-
right symmetry is spontaneously broken. The electroweak symmetry breaking is triggered
by non-zero κ,κ′.

There are some hierarchies among the vacuum expectation values κ, κ′ and vL,R. First
of all, κ,κ′, vL & vR is needed to suppress the right-handed currents at low energy scales.
On the other hand, we would expect another hierarchy vL & vR in order to generate
the neutrino masses through the see-saw mechanism, namely vL ! a few MeV [13][14]
for vR ∼ multi-TeV. And also the constraints from electroweak ρ-parameter requires
vL ! 10GeV[15]. In this work, we shall use the limit vL → 0, which is used in literatures.
Note that the Higgs potential allows such a limit since vL ∝ κ2/vR [14]. Therefore the
phase θL has no physical consequence, while ω could trigger a spontaneous CP violation.
According to the hierarchy described above, we introduce an expansion parameter ε as:

ε = v/vR, with v2 = κ2 + κ′2

where v = 174 GeV is the standard electroweak symmetry breaking scale and vR =
O(TeV ) as discussed above. The ratio of κ and κ′ is defined by the usual parameter β,
i.e.

κ = v sin β, κ′ = v cos β, tan β =
κ

κ′ . (6)

Then tan β is a free parameter in this model. tanβ %= 1 is required by the difference of
the masses of the fermions. On the other hand, mass hierarchy mt ) mb implies large
tan β. However, the large value of tanβ as O(mt

mb
) in some literatures, is disfavored by the

electroweak precision observables [16]. 1 < tan β < 10 is used in [16]. In this work, we
take tanβ > 1.

In the low energy processes, the discrete left-right symmetry breaks down, then the
gauge coupling constants gL and gR are in general unequal, gL %= gR. As gL is the
coupling constant in the SM, the ratio of r ≡ gR/gL is not allowed to be arbitrarily
large, otherwise the interactions between right-handed gauge bosons and fermions would
become nonperturbative. Having the latest direct search result, r mW2 > 2.5 TeV [3], and
assuming vR to be muti-TeV or higher, we use r less than 2 in the following.

The charged gauge bosons are mixture of the mass eigenstates,
(

W−
L

W−
R

)
=

(
cos ζ − sin ζeiw

sin ζe−iw cos ζ

)(
W−

1

W−
2

)
, (7)
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where the mass of W1 and W2 are

MW1 ≈
gLv√
2
(1− ε2 sin2 β cos2 β), MW2 ≈ gRvR(1 +

1

4
ε2), (8)

and the mixing angle

sin ζ ≈ gL
gR

|κ||κ′|
v2R

=
gL
gR

1

2
ε2 sin 2β ≈

M2
W1

M2
W2

gR
gL

sin 2β. (9)

The full Lagrangian for the neutral current and the charged current associated with gauge
bosons and Goldstone bosons in the LRSM are given in Appendix A.

In [6], it is shown that the masses of charged Higgs bosons and heavy flavor-changing
neutral Higgs bosons in this model are nearly the same. To the leading order, their masses
are equal to each other [16],

MH± = MH0 = MA0 . (10)

For simplicity, we use MH representing the masses of charged and heavy neutral Higgs.
The Lagrangians for the interactions between H0, H± and fermions are given in Appendix
A. As we see later-on, the tree-level flavor changing neutral current due to Higgs H0 and
A0 will affect the ∆F = 2 processes very much unless MH is sufficiently large [16]. In
this work, we consider the cases of MH = 20TeV and 50TeV. For such heavy mass, the
contributions on b → sγ and ∆F = 2 processes from charged Higgs in the loop diagrams
become negligibly small.

Concerning the CKM matrix, we have one for left-handed coupling V L
CKM and one

right-handed V R
CKM. We define V L

CKM by usual three rotation angles and one phase. In
this way, The right-handed CKM matrix V R

CKM is written by nine parameters remained
after imposing the unitarity condition.

There are many models on the right-handed CKM matrix. In most of the previous
works, the two quark mixing matrices are assumed to be related to each other. In the
so-called manifest Left-Right Symmetric Model[4], the right-handed matrix is exactly the
same as the left-handed one, V R

CKM = V L
CKM , while in the so-called pseudo-manifest Left-

Right Symmetric Model[5], the right-handed matrix is related to the left-handed one by
diagonal phase matrices Ku,d, V R

CKM = KuV L
CKMKd† . In the first scenario, VEV in the

Higgs sector are all real and then there are only explicit CP violations from the phases in
CKM matrices. In the second scenario, the Yukawa couplings are taken to be real which
leads to spontaneous CP violation from the complex Higgs VEV. Both scenarios confront
strong constraints from the mass difference and CP violation in K0 − K

0
system and

sin 2β [7]. More general right-handed CKM matrix have been studies in [6, 16, 17, 18].

Motivated by the K0 −K
0
mass difference, Langacker and Sankar proposed two simple

formulae of right-handed CKM matrix [18],

V R
(A) =




1 0 0
0 cα ±sα
0 sα ∓cα



 , V R
(B) =




0 1 0
cα 0 ±sα
sα 0 ∓cα



 , (11)
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[Pati,Salam,1974;Mohapatra,Pati,1975;Mohapatra,Sejanovic,1975] 

Extended gauge group

Two step Symmetry breakings

Right handed mass very large

W boson with left- and right-handed couplings (WL & WR)

Mass eigenstates W1 & W2 are a mixture of left and right W’s

EK, C.-D. Lu and F.-S. Yu (JHEP 2013)
Thesis of F.-S. Yu (China-France co-supervision)



Example: Left-Right Symmetric Model

b
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+...
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x
x

WR contribution from W1; 
Proportional to mb but 
suppressed by 1/M22 WR contribution from W1; 

Proportional to mb

Right handed-photon contribution

WL & WR mixing 
contribution; 

 proportional to mt ! 

Chiral enhancement term

The Yukawa coupling between heavy neutral Higgs and quarks are [6]

LNH = (
√
2GF )

1/2

[
ūLi

(
VLMDV

†
R

)

ij

(
H0 − iA0

)
uRj + d̄Li

(
V †
LMUVR

)

ij

(
H0 + iA0

)
dRj

]

+h.c. (70)

The effective Hamiltonian of b → cc̄s in the LRSM at the tree level is

Htree =
g2L
2
V L∗
cs V L

cb

1

M2
1

c̄γµPLb · s̄γµPLc+
g2R
2
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cs V R

cb

1

M2
2

c̄γµPRb · s̄γµPRc

+
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2
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iω 1

M2
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gLgR
2

V L
cb (V

R
cs e

iω)∗
1

M2
1

sin ζ c̄γµPRb · s̄γµPLc, (71)

B Wilson coefficients C7γ and C ′
7γ

In the LRSM, the Wilson coefficients for the b → sγ processes are

C7γ(µR) =
1

2

[
cos2 ζASM(xt) + sin2 ζ
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1
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2
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2
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cs V R

cb

V L∗
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eiw
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]
(72)
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(73)
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Figure 2: Plots of real part and imaginary part of C ′eff
7γ /Ceff

7γ in the LRM. The left and
right figures corresponds to the cases that the heavy Higgs mass at 20 and 50 TeV. The
white circle represents the constraint from the measured branching ratio of B → Xsγ with
three standard deviation, in the scenario assuming CNP

7γ = 0, i.e. C7γ = CSM
7γ , C ′NP

7γ ∈ C.
The points with different colors represent the cases that the mass of W2 is taken to be
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 TeV respectively, with the circles from the outside to
the inside in the figure. The points represents the solutions that are mainly constrained
by εK , ∆Ms and φs. |C ′

7γ/C7γ| would be larger as the mass of W2 decreases. We can find
that |C ′

7γ/C7γ| can be as large as 0.7 as MW2 = 1.5 TeV, 0.5 for MW2 = 2 TeV, and 0.3
for MW2 = 2.5 TeV. There are fewer points for the circles of lower mass of W2 than those
of higher mass, because of the more sever constraints for the lower mass cases, which
may be kind of fine-tuning. This also means that the possibility of C ′

7γ/C7γ localized in
the regions with few points is smaller than those with more points. The width of each
circle is from the several solutions of θ23. The few points excludes the constraint of
Br(B → Xsγ) in the right figure, because of the small contribution of CNP

7γ in the LRM
while in this figure it is assumed to be zero.

17

Real and Imaginary part of C ′
7γ/C7γ in the LRSM

|C ′
7γ/C7γ | can be 0.5 for M 2 = 2TeV, and 0.3 for M 2 = 2.5TeV, if

we fix g! /g" = 1 and tanβ = 10.

C ′
7γ(µ#)

C7γ(µ#)
∼ −1180

g2
!

g2
"

M2
 1

M2
 2

sin 2β V ! ∗$% e−&ω

Fu-Sheng Yu ( IHEP & LAL ) Photon Polarization in #→ %γ in LRSM KEK FF-2013, March 13 17 / 31

Model parameters;  gR/gL=1, tan beta=10

Example: Left-Right Symmetric Model
EK, C.-D. Lu and F.-S. Yu (JHEP 2013)
Thesis of F.-S. Yu (China-France co-supervision)



How do we measure the polarization?!

‣Method 1: Time dependent CP asymmetry in 
Bd➔KSπ0γ Bs➔Κ+Κ-γ (called SKSπ0γ, SΚ+Κ-γ)

‣Method II: Transverse asymmetry in Bd➔K*l+l-

(called ΑΤ(2), ΑΤ(im))

‣Method III: B➔K1(➔Kππ)γ (called λγ)

‣Method IV: Λb➔Λ(*)γ, Ξb➔Ξ*γ ...  

Atwood et.al. PRL79

Kruger, Matias PRD71
Becirevic, Schneider, 

NPB854 

Gronau et al PRL88
E.K. Le Yaouanc, Tayduganov

PRD83

proposed methods

Gremm et al.’95, Mannel et 
al ’97, Legger et al ’07, 

Oliver et al ‘10



Polarization determination with B➔K1(➔Kππ)γ 

B
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Friday, October 11, 13

spin 0

Measuring the photon polarization using 

B!K1(1400)! (!K""!) 

Left

Right

!

"

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

# K1

Why do we use K1(1400)? 

K1(1400) decays to three bodies. 3 body decay

spin 1spin 1

* Most likely, K1 can decays through (Kπ)Sπ, too. 

J function

Gronau, Grossman, Pirjol, Ryd PRL88(’01)

λ :

A =

∫ π/2
0 d|M|2dθ −

∫ π
π/2 d|M|2dθ

∫ π
0 d|M|2dθ

=
3
4
〈Im(n̂ · ( "J × "J∗))〉

〈| "J |2〉
|cR|2 − |cL|2

|cR|2 + |cL|2

Helicity amplitude 
of K1(1+)➔Kππ!J : Polarization parameter 

related to C7, C7’ etc...

∫ 1
0 cos θ dΓ

d cos θ −
∫ 0
−1 cos θ dΓ

d cos θ∫ 1
−1 cos θ dΓ

d cos θ

Daum et al,  Nucl Phys, B187 (‘81)
Thesis of S. Akar (Babar) *
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∫ 1
0 cos θ dΓ

d cos θ −
∫ 0
−1 cos θ dΓ

d cos θ∫ 1
−1 cos θ dΓ

d cos θ

Angular & Dalitz 
distribution of K1 decay 

(J-function)

Circularly-polarization 
measurement of γ 

We need detailed information on 
the hadronic amplitude of K1➔Kππ

Polarization determination with B➔K1(➔Kππ)γ 



Figure 3: Background-subtracted K+π−π+ invariant mass distribution, obtained using
the sPlot technique [24].
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Figure 4: Invariant Kππγ mass for B+ (left) and B− (right) candidates with the result of the
simultaneous fit overlaid. The signal component is shown in red (solid), combinatorial background
in green (dotted), missing pion background in black (dashed) and partially reconstructed
background in purple (dot-dashed).

sample. As expected, the up-down asymmetries obtained for B+ and B− are compatible,
−0.084± 0.026 and −0.086± 0.025, respectively, where uncertainties are statistical only.

8

ACP= -0.007±0.015(stat)±0.008(syst?)

[1+] K1(1270)

[2+] K2*(1430)???

[1-] K*(1680)???

First measurement of up-down 
asymmetry at LHCb!
The suppression of 

[1+] K1(1400)

LHCb-CONF-2013-009 
AUP= -0.085±0.019(stat)±0.003(syst?)

Interpretation 
requires detailed 
information of K1 

decays.



Strong decay of K1➔Kππ
How to extract the hadronic information (i.e. function J)?

‣Model dependent way : theoretical 
compute it 4 form factor, 2 couplings, 1 
phase (more if there is (Kπ)s)

‣(Semi-)model independent way

‣Diffractive process pK➔pKK1

‣B➔J/ΨK1

‣J/Ψ➔K1K, Ψ’➔K1K

‣τ➔K1ν...

‣B➔Kππγ direct CP violation

‣Model dependent way : theoretical 
compute it 4 form factor, 2 couplings, 1 
phase

‣(Semi-)model independent way

‣Diffractive process pK➔pKK1

‣B➔J/ΨK1

‣J/Ψ➔K1K, Ψ’➔K1K

‣τ➔K1ν...

‣B➔Kππγ direct CP violation

proposed methods

Brandenburg et al, 
Phys Rev Lett, 36 (‘76)
Otter et al, 
Nucl Phys, B106 (‘77) 
Daum et al,  Nucl Phys, B187 (‘81) 
Thesis of Jasinski (COMPASS ‘12)

Tayduganov, EK, Le Yaouanc, PRD ‘11

EK, Le Yaouanc in preparation

BES Phys. Lett. B ’06 (?)

Collaboration with C.D. Lu and F.S. Yu

ALEPH, Eur. Phys. J. C11 ‘99



Conclusions

• In the era of LHCb/Belle II, a plenty of b➔s transition processes 
where a large new physics contribution are possible will be measured. 

• The radiative decays are particularly interesting (to me) due to the 
chiral-enhancement factor. 

• We discussed the photon polarization determination of b➔sγ 
processes. 

• For interpretation of the LHCb up-down asymmetry measurement of 
B➔K1γ➔(Kππ)γ, understanding of the hadronic information is 
necessary.  We are now discussing how to extract this information by 
using different experimental data. 



Backup



Extracting J-function 
- K1 strong decay amplitudes- 

124 partial wave analysis
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Figure 7.4: JP = 1+M = 0/1 wave intensities and the relative phase motion in
respect to the strongest intensity of the counter branch. Only the
1+ 0+ K∗(892)

[
0
1

]
π− wave intensity shows a clear double structure.

Other waves have only the same characteristic phase motion. The
K1(1400) resonance couples much stronger to the (K−π+)-isobar
branch then in published results by the ACCMOR collaboration.

7.4 mass independent fit results 125
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Figure 7.5: JP = 1+M = 0 D-waves showing a resonant behaviour around
1.8GeV/c2. The intensity distributions were well in agreement with
observations by the ACCMOR collaboration.20 C. Daum et al. / Diffractive production 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 

Figure 7.6: Left: the intensity over the K−π+π− mass of the two main JP = 1+

waves as published by the ACCMOR collaboration [1] in 1981. Right:
The relative phase motion between them. Axis titles are same like
in figure 7.4 and the upper figures can be directly compared. The
range of momentum transferred is 0.05 ! t ′ ! 0.7GeV2/c2. The
continuous line is a mass dependent fit to the data.

COMPASS ‘12 ACMMOR ‘81



Figure 3: Background-subtracted K+π−π+ invariant mass distribution, obtained using
the sPlot technique [24].
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Figure 4: Invariant Kππγ mass for B+ (left) and B− (right) candidates with the result of the
simultaneous fit overlaid. The signal component is shown in red (solid), combinatorial background
in green (dotted), missing pion background in black (dashed) and partially reconstructed
background in purple (dot-dashed).

sample. As expected, the up-down asymmetries obtained for B+ and B− are compatible,
−0.084± 0.026 and −0.086± 0.025, respectively, where uncertainties are statistical only.

8

ACP= -0.007±0.015(stat)±0.008(syst?)

[1+] K1(1270)

[2+] K2*(1430)???

[1-] K*(1680)???

First measurement of Up-Down 
asymmetry at LHCb!

Direct CP violation in b ➔s γ is an 
important null test of BSM. It may 
plays a role to disentangle real and 
imaginary part of new physics 
contributions. 

‣ Deriving the Direct CP violation 
formulae for B➔Kππγ. 
‣Removing “fake” CP violation by 
disentangling the different spin 
parity states using the angular 
distribution.

‣ Quantifying the improvement in 
sensitivity to the new physics. 

The suppression of 
[1+] K1(1400)

LHCb-CONF-2013-009 

➡ Further applications: many similar 
cases in B/D decays

AUP= -0.085±0.019(stat)±0.003(syst?)



Example: Left-Right Symmetric Model

CKM matrix. In section 3 and 4, we describe the b → sγ and meson mixings in LRSM.
We show our numerical results in section 5 and we conclude in section 6.

2 Left-Right Symmetric Model

The Left-Right Symmetric Model (LRSM) is based on the extended gauge group SU(2)L×
SU(2)R × U(1)Ỹ which involves additional charged and neutral gauge bosons [12]. The
electric charge can be also extended as Q = TL3+TR3+ Ỹ . Then, for the ordinary quarks
and leptons, the hypercharge gets a physical meaning, i.e. Ỹ = (B − L)/2 in this model.
The Lagrangian of LRSM is symmetric under parity, which is broken only spontaneously
by the non-zero vacuum expectation values of Higgs fields as shown in the following.

The left-handed fermions are SU(2)L doublets and SU(2)R singlets as in the SM while
the right-handed fermions are SU(2)R doublets and SU(2)L singlets. Thus, the charge
assignments (TL3, TR3, Ỹ ) of fermions yields:

QL ≡
(

uL

dL

)
∼

(
1

2
, 0,

1

6

)
, QR ≡

(
uR

dR

)
∼

(
0,

1

2
,
1

6

)
, (1)

LL ≡
(

νL
#L

)
∼

(
1

2
, 0,−1

2

)
, LR ≡

(
νR
#R

)
∼

(
0,

1

2
,−1

2

)
, (2)

The symmetry is spontaneously broken in two steps

SU(2)L × SU(2)R × U(1)Ỹ → SU(2)L × U(1)Y → U(1)EM. (3)

The first step SU(2)R × U(1)Ỹ → U(1)Y is parity and B − L violating while the second
step is equivalent to the electroweak symmetry breaking. Let us first see the scalar
multiplet Φ, which triggers the second step symmetry breaking. Consulting the Yukawa
interaction of the form, QLΦQR, Φ should be a 2×2 unitary matrix. Moreover, this term
to be invariant under SU(2) transformation requires Φ to be bi-doublet scalar fields with
charge assignment:

Φ ≡
(

ϕ0
1 ϕ+

2

ϕ−
1 ϕ0

2

)
∼

(
1

2
,
1

2
, 0

)
. (4)

The Φ field can not trigger the first step symmetry breaking because (i), Φ couples to
both of SU(2)L and SU(2)R and does not distinguish these two groups. Therefore Φ could
not break parity. (ii) Φ does not couple to U(1)Ỹ which would be unbroken and would
leave a massless gauge boson which is not observed. Thus, we must introduce another
scalar multiplets to break parity, namely the SU(2)R, and also U(1)Ỹ . In particular, the
scalar multiplet with charge B − L = 2 is attractive since it can generate right-handed
Majorana neutrino masses. As a result, we introduce the scalar triplet:

∆R ≡
(

δ+R/
√
2 δ++

R

δ0R −δ+R/
√
2

)
∼ (0, 1, 2) ,

4

Note that in this model another scalar field ∆L is also introduced in order to ensure the
parity conservation at a high energy before the symmetry is broken.

Now the symmetry breaking (3) can be undertaken by the non-zero vacuum expecta-
tion values (VEV). It is known that two of four complex phases can be eliminated and
remaining two phases are assigned conventionally to the VEV of Φ, ∆L and ∆R [6]:

〈Φ〉 =
(

κ 0
0 κ′eiω

)
, 〈∆L〉 =

(
0 0

vLeiθL 0

)
, 〈∆R〉 =

(
0 0
vR 0

)
, (5)

where, vL,R,κ and κ′ are real numbers. The symmetry breaking of SU(2)R × U(1)Ỹ →
U(1)Y is achieved at a high scale, i.e. multi-TeV, by non-zero 〈∆R〉. If vL %= vR, the left-
right symmetry is spontaneously broken. The electroweak symmetry breaking is triggered
by non-zero κ,κ′.

There are some hierarchies among the vacuum expectation values κ, κ′ and vL,R. First
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where the mass of W1 and W2 are

MW1 ≈
gLv√
2
(1− ε2 sin2 β cos2 β), MW2 ≈ gRvR(1 +

1

4
ε2), (8)

and the mixing angle

sin ζ ≈ gL
gR

|κ||κ′|
v2R

=
gL
gR

1

2
ε2 sin 2β ≈

M2
W1

M2
W2

gR
gL

sin 2β. (9)

The full Lagrangian for the neutral current and the charged current associated with gauge
bosons and Goldstone bosons in the LRSM are given in Appendix A.

In [6], it is shown that the masses of charged Higgs bosons and heavy flavor-changing
neutral Higgs bosons in this model are nearly the same. To the leading order, their masses
are equal to each other [16],

MH± = MH0 = MA0 . (10)

For simplicity, we use MH representing the masses of charged and heavy neutral Higgs.
The Lagrangians for the interactions between H0, H± and fermions are given in Appendix
A. As we see later-on, the tree-level flavor changing neutral current due to Higgs H0 and
A0 will affect the ∆F = 2 processes very much unless MH is sufficiently large [16]. In
this work, we consider the cases of MH = 20TeV and 50TeV. For such heavy mass, the
contributions on b → sγ and ∆F = 2 processes from charged Higgs in the loop diagrams
become negligibly small.

Concerning the CKM matrix, we have one for left-handed coupling V L
CKM and one

right-handed V R
CKM. We define V L

CKM by usual three rotation angles and one phase. In
this way, The right-handed CKM matrix V R

CKM is written by nine parameters remained
after imposing the unitarity condition.

There are many models on the right-handed CKM matrix. In most of the previous
works, the two quark mixing matrices are assumed to be related to each other. In the
so-called manifest Left-Right Symmetric Model[4], the right-handed matrix is exactly the
same as the left-handed one, V R

CKM = V L
CKM , while in the so-called pseudo-manifest Left-

Right Symmetric Model[5], the right-handed matrix is related to the left-handed one by
diagonal phase matrices Ku,d, V R

CKM = KuV L
CKMKd† . In the first scenario, VEV in the

Higgs sector are all real and then there are only explicit CP violations from the phases in
CKM matrices. In the second scenario, the Yukawa couplings are taken to be real which
leads to spontaneous CP violation from the complex Higgs VEV. Both scenarios confront
strong constraints from the mass difference and CP violation in K0 − K

0
system and

sin 2β [7]. More general right-handed CKM matrix have been studies in [6, 16, 17, 18].

Motivated by the K0 −K
0
mass difference, Langacker and Sankar proposed two simple

formulae of right-handed CKM matrix [18],

V R
(A) =




1 0 0
0 cα ±sα
0 sα ∓cα



 , V R
(B) =




0 1 0
cα 0 ±sα
sα 0 ∓cα



 , (11)
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[Pati,Salam,1974;Mohapatra,Pati,1975;Mohapatra,Sejanovic,1975] 

Extended gauge group

Two step Symmetry breakings

Right handed mass very large

W boson with left- and right-handed couplings (WL & WR)

Mass eigenstates W1 & W2 are a mixture of left and right W’s



Example: Left-Right Symmetric Model

The Yukawa coupling between heavy neutral Higgs and quarks are [6]

LNH = (
√
2GF )

1/2

[
ūLi

(
VLMDV

†
R

)

ij

(
H0 − iA0

)
uRj + d̄Li

(
V †
LMUVR

)

ij

(
H0 + iA0

)
dRj

]

+h.c. (70)

The effective Hamiltonian of b → cc̄s in the LRSM at the tree level is

Htree =
g2L
2
V L∗
cs V L

cb

1

M2
1

c̄γµPLb · s̄γµPLc+
g2R
2
V R∗
cs V R

cb

1

M2
2

c̄γµPRb · s̄γµPRc

+
gLgR
2

V L∗
cs V R

cb e
iω 1

M2
1

sin ζ c̄γµPLb · s̄γµPRc

+
gLgR
2

V L
cb (V

R
cs e

iω)∗
1

M2
1

sin ζ c̄γµPRb · s̄γµPLc, (71)

B Wilson coefficients C7γ and C ′
7γ

In the LRSM, the Wilson coefficients for the b → sγ processes are

C7γ(µR) =
1

2

[
cos2 ζASM(xt) + sin2 ζ

M2
1

M2
2

ASM(x̃t)

+
mt

mb

gR
gL

V R
tb

V L
tb

sin ζ cos ζeiw
(
ALR(xt)−

M2
1

M2
2

ALR(x̃t)
)

+
mc

mb

gR
gL

V L∗
cs V R

cb

V L∗
ts V L

tb

sin ζ cos ζeiw
(
ALR(xc)−

M2
1

M2
2

ALR(x̃c)
)

+
mt

mb

tan 2β

cos 2β
eiw

V R
tb

V L
tb

A1
H(y) + tan2 2βA2

H(y)

]
(72)

C ′
7γ(µR) =

1

2

[
g2R
g2L

V R∗
ts V R

tb

V L∗
ts V L

tb

(
sin2 ζASM(xt) + cos2 ζ

M2
1
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2

ASM(x̃t)
)
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mb

gR
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V R∗
ts

V L∗
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sin ζ cos ζe−iw
(
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1
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V R∗
cs V L
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(
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M2
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]
(73)
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Kobayashi-Maskawa mechanism at work!

‣Φ1 is measured to be (21.7±0.64)o 
‣Improvement in Φ3 measurement is on-going (B factories, LHCb).
‣Issues in Vub measurements. Improvement in the branching ratio 
measurement of B➞τν can be done at Belle II. 
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Many expectations, many 2-3 sigmas... 
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Figure 1 shows the m2
miss and |p∗

! | projections of the fit
to the four D(∗)! samples. The fit describes the data well
and the observed differences are consistent with the sta-
tistical and systematic uncertainties on the signal PDFs
and background distributions.
We extract the branching fraction ratios as R(D(∗)) =

(Nsig/Nnorm)/(εsig/εnorm), where Nsig and Nnorm refer
to the number of signal and normalization events, re-
spectively, and εsig/εnorm is the ratio of their efficiencies
derived from simulations. Table I shows the results of the
fits for the four individual samples as well as an additional
fit in which we impose the isospin relations R(D0) =
R(D+) ≡ R(D) and R(D∗0) = R(D∗+) ≡ R(D∗). The
statistical correlations are −0.59 for R(D0) and R(D∗0),
−0.23 for R(D+) and R(D∗+), and −0.45 for R(D) and
R(D∗). We have verified that the values ofR(D(∗)) from
fits to samples corresponding to different run periods are
consistent. We repeated the analysis varying the selec-
tion criteria over a wide range corresponding to changes
in the signal-to-background ratios between 0.3 and 1.3,
and also arrive at consistent values of R(D(∗)).
The largest systematic uncertainty affecting the fit re-

sults is due to the poorly understood B → D∗∗(!/τ)ν
background. The PDFs that describe this contribution
are impacted by the uncertainty on the branching frac-
tions of the four B → D∗∗!ν decays, the relative π0/π±

efficiency, and the branching fraction ratio ofB → D∗∗τν
to B → D∗∗!ν decays. These effects contribute to an un-
certainty of 2.1% on R(D) and 1.8% on R(D∗). We also
repeated the fit including an additional floating compo-
nent with the distributions of B → D(∗)η!ν, nonresonant
B → D(∗)π(π)!ν, and B → D∗∗(→ D(∗)ππ)!ν decays.
The B → D∗∗(!/τ)ν background is tightly constrained
by the D(∗)π0! samples, and, as a result, all these fits
yield similar values for R(D(∗)). We assign the observed
variation as a systematic uncertainty, 2.1% forR(D) and
2.6% for R(D∗).
We also account for the impact of the uncertainties

described above on the relative efficiency of the B →
D∗∗(!/τ)ν contributions to the signal and D(∗)π0! sam-
ples. In addition, the BDT selection introduces an un-
certainty that we estimate as 100% of the efficiency cor-
rection that we determined from control samples. These
effects result in uncertainties of 5.0% and 2.0% on R(D)
and R(D∗), respectively.
The largest remaining uncertainties are due to the con-

tinuum andBB backgrounds [4.9% onR(D) and 2.7% on
R(D∗)], and the PDFs for the signal and normalization
decays (4.3% and 2.1%). The uncertainties in the effi-
ciency ratios εsig/εnorm are 2.6% and 1.6%; they do not
affect the significance of the signal and are dominated by
the limited size of the MC samples. Uncertainties due
to the FFs, particle identification, final-state radiation,
soft-pion reconstruction, and others related to the detec-
tor performance largely cancel in the ratio, contributing
only about 1%. The individual systematic uncertainties
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FIG. 2. (Color online) Comparison of the results of this anal-
ysis (light gray, blue) with predictions that include a charged
Higgs boson of type II 2HDM (dark gray, red). The SM cor-
responds to tanβ/mH+ = 0.

are added in quadrature to define the total systematic
uncertainty, reported in Table I.
There is a positive correlation between some of the

systematic uncertainties on R(D) and R(D∗), and, as a
result the correlation of the total uncertainties is reduced
to−0.48 forR(D0) andR(D∗0), to−0.15 forR(D+) and
R(D∗+), and to −0.27 for R(D) and R(D∗).
The statistical significance of the signal is determined

as Σstat =
√

2∆(lnL), where ∆(lnL) is the change in the
log-likelihood between the nominal fit and the no-signal
hypothesis. The statistical and dominant systematic un-
certainties are Gaussian. We estimate the overall signifi-

cance as Σtot = Σstat × σstat/
√

σ2
stat + σ∗2

syst, where σstat

is the statistical uncertainty and σ∗
syst is the total system-

atic uncertainty affecting the fit. The significance of the
B → Dτ−ντ signal is 6.8σ, the first such measurement
exceeding 5σ.
To compare the measured R(D(∗)) with the SM pre-

dictions we have updated the calculations in Refs. [8, 31]
taking into account recent FF measurements. Averaged
over electrons and muons, we find R(D)SM = 0.297 ±
0.017 and R(D∗)SM = 0.252±0.003. At this level of pre-
cision, additional uncertainties could contribute [8], but
the experimental uncertainties are expected to dominate.
Our measurements exceed the SM predictions for

R(D) and R(D∗) by 2.0σ and 2.7σ, respectively. The
combination of these results, including their −0.27 cor-
relation, yields χ2 = 14.6 for 2 degrees of freedom, corre-
sponding to a p value of 6.9×10−4. Thus, the possibility
of both the measuredR(D) and R(D∗) agreeing with the
SM predictions is excluded at the 3.4σ level [32].
Figure 2 shows the effect that a charged Higgs bo-

son of the type II 2HDM [7, 33] would have on R(D)
and R(D∗) in terms of the ratio of the vacuum expecta-
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Figure 1 shows the m2
miss and |p∗

! | projections of the fit
to the four D(∗)! samples. The fit describes the data well
and the observed differences are consistent with the sta-
tistical and systematic uncertainties on the signal PDFs
and background distributions.
We extract the branching fraction ratios as R(D(∗)) =

(Nsig/Nnorm)/(εsig/εnorm), where Nsig and Nnorm refer
to the number of signal and normalization events, re-
spectively, and εsig/εnorm is the ratio of their efficiencies
derived from simulations. Table I shows the results of the
fits for the four individual samples as well as an additional
fit in which we impose the isospin relations R(D0) =
R(D+) ≡ R(D) and R(D∗0) = R(D∗+) ≡ R(D∗). The
statistical correlations are −0.59 for R(D0) and R(D∗0),
−0.23 for R(D+) and R(D∗+), and −0.45 for R(D) and
R(D∗). We have verified that the values ofR(D(∗)) from
fits to samples corresponding to different run periods are
consistent. We repeated the analysis varying the selec-
tion criteria over a wide range corresponding to changes
in the signal-to-background ratios between 0.3 and 1.3,
and also arrive at consistent values of R(D(∗)).
The largest systematic uncertainty affecting the fit re-

sults is due to the poorly understood B → D∗∗(!/τ)ν
background. The PDFs that describe this contribution
are impacted by the uncertainty on the branching frac-
tions of the four B → D∗∗!ν decays, the relative π0/π±

efficiency, and the branching fraction ratio ofB → D∗∗τν
to B → D∗∗!ν decays. These effects contribute to an un-
certainty of 2.1% on R(D) and 1.8% on R(D∗). We also
repeated the fit including an additional floating compo-
nent with the distributions of B → D(∗)η!ν, nonresonant
B → D(∗)π(π)!ν, and B → D∗∗(→ D(∗)ππ)!ν decays.
The B → D∗∗(!/τ)ν background is tightly constrained
by the D(∗)π0! samples, and, as a result, all these fits
yield similar values for R(D(∗)). We assign the observed
variation as a systematic uncertainty, 2.1% forR(D) and
2.6% for R(D∗).
We also account for the impact of the uncertainties

described above on the relative efficiency of the B →
D∗∗(!/τ)ν contributions to the signal and D(∗)π0! sam-
ples. In addition, the BDT selection introduces an un-
certainty that we estimate as 100% of the efficiency cor-
rection that we determined from control samples. These
effects result in uncertainties of 5.0% and 2.0% on R(D)
and R(D∗), respectively.
The largest remaining uncertainties are due to the con-

tinuum andBB backgrounds [4.9% onR(D) and 2.7% on
R(D∗)], and the PDFs for the signal and normalization
decays (4.3% and 2.1%). The uncertainties in the effi-
ciency ratios εsig/εnorm are 2.6% and 1.6%; they do not
affect the significance of the signal and are dominated by
the limited size of the MC samples. Uncertainties due
to the FFs, particle identification, final-state radiation,
soft-pion reconstruction, and others related to the detec-
tor performance largely cancel in the ratio, contributing
only about 1%. The individual systematic uncertainties
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FIG. 2. (Color online) Comparison of the results of this anal-
ysis (light gray, blue) with predictions that include a charged
Higgs boson of type II 2HDM (dark gray, red). The SM cor-
responds to tanβ/mH+ = 0.

are added in quadrature to define the total systematic
uncertainty, reported in Table I.
There is a positive correlation between some of the

systematic uncertainties on R(D) and R(D∗), and, as a
result the correlation of the total uncertainties is reduced
to−0.48 forR(D0) andR(D∗0), to−0.15 forR(D+) and
R(D∗+), and to −0.27 for R(D) and R(D∗).
The statistical significance of the signal is determined

as Σstat =
√

2∆(lnL), where ∆(lnL) is the change in the
log-likelihood between the nominal fit and the no-signal
hypothesis. The statistical and dominant systematic un-
certainties are Gaussian. We estimate the overall signifi-

cance as Σtot = Σstat × σstat/
√

σ2
stat + σ∗2

syst, where σstat

is the statistical uncertainty and σ∗
syst is the total system-

atic uncertainty affecting the fit. The significance of the
B → Dτ−ντ signal is 6.8σ, the first such measurement
exceeding 5σ.
To compare the measured R(D(∗)) with the SM pre-

dictions we have updated the calculations in Refs. [8, 31]
taking into account recent FF measurements. Averaged
over electrons and muons, we find R(D)SM = 0.297 ±
0.017 and R(D∗)SM = 0.252±0.003. At this level of pre-
cision, additional uncertainties could contribute [8], but
the experimental uncertainties are expected to dominate.
Our measurements exceed the SM predictions for

R(D) and R(D∗) by 2.0σ and 2.7σ, respectively. The
combination of these results, including their −0.27 cor-
relation, yields χ2 = 14.6 for 2 degrees of freedom, corre-
sponding to a p value of 6.9×10−4. Thus, the possibility
of both the measuredR(D) and R(D∗) agreeing with the
SM predictions is excluded at the 3.4σ level [32].
Figure 2 shows the effect that a charged Higgs bo-

son of the type II 2HDM [7, 33] would have on R(D)
and R(D∗) in terms of the ratio of the vacuum expecta-
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Where to search now???

Everywhere! But theoretical cleanness important! 

CP violation, (semi-)leptonic, radiative decays...


