Physics on Particle Accelerators: What's Next?

Zhiqing Zhang

- ☐ Introduction
- ☐ Brief summary of the LHC Run-1 results
- □ Expectation for LHC runs (13/14TeV, 300fb⁻¹)
- □ Projection for HL-LHC (3000fb⁻¹)
- ☐ Future colliders
 - > ILC/CLIC
 - > CHEP, FCC-ee (TLEP)
 - > SppC, FCC-hh
- ☐ Summary

Past

Current

Near-

Medium-

Far-future

A Brief Historical Account

Precision measurements

Late 70's, precision measurements of neutral currents

→ Prediction of W & Z bosons

90's precise measurement of W & Z properties at LEP

→ Prediction of top mass

Precise measurement of top & W masses at Tevatron

→ Constrained Higgs mass

Discovery

→ 1983: W & Z discovery at SppS

→ 1995: top discovery at Tevatron

→ 2012: Higgs discovery at LHC

- → Strong interplay between precision and discovery:
 Precision provides guidance for discovery
 Discovery enables more observables for precision measurements
- → Colliders played irreplaceable role in establishing the SM

LHC Runs & Current Schedule

Exploit full physics potential @ LHC is the top priority (CERN Council 2013)

→ LHC will run for about 20 years!

LS1: Long Shutdown 1 ongoing for increasing √s up to 14TeV

LS2: LHC injector upgrades; phase-1 detector upgrade

LS3: Major intervention on more than 1.2km for HL-LHC (High Luminosity LHC); phase-2 detector upgrade

Main Results from LHC Run-1

- Consolidated the SM with detailed studies at \sqrt{s} = 7-8 TeV, which complement wealth of measurements at lower energy by previous/present machines
 - → The SM works beautifully, no deviation seen
- Completed the SM with the Higgs boson discovery
 - → Yet to be verified with higher precision
- Found no evidence of new physics (yet) but already helped in excluding some BSM scenarios & motivating others
 - \rightarrow need \sqrt{s} =13/14 TeV and high luminosity run (HL-LHC)

LHC had an extremely successful and fruitful start! Extremely broad physics program outperforms expectations due to innovative analysis techniques and advances in theory

Some of the SM Results

Combined Tevatron & LHC m, Measurements

The 1st Tevatron and LHC combination!

1403.4427

Tevatron: 300,000 top events

LHC (7TeV only): 18 millions

 $\delta m_{t} \sim 0.4\%$

Current Knowledge on the Higgs Boson

Not yet the final Run-1 results

Mass: $m_H = 125.5 \pm 0.2 (\text{stat})^{+0.5}_{-0.6} (\text{syst}) \,\text{GeV}$

 $\gamma \gamma ZZ(4|) \qquad m_H = 125.7 \pm 0.3 ({
m stat}) \pm 0.3 ({
m syst}) \, {
m GeV}$

Currently: $\delta m_H \sim 0.3-0.5\%$ per expt. Expected final Run-1 analysis: < 0.2%

Width: <17.4MeV @95%CL (CMS Moriond'14)

ZZ(41, 212v) SM: 4MeV

Couplings: $\kappa_x = \frac{g_x}{g_x^{\rm SM}} \, , \lambda_{xy} = \frac{\kappa_x}{\kappa_y}$

Spin-Parity: ZZ(4I), WW(IvIv), yy

Data favors 0+ Spin-1, 0- excluded at >99% Spin-2+m excluded at >95% ATLAS: PLB726 (2013) 88 CMS: CMS-PAS-HIG-13-005

No sign of BSM Higgs so far based on

- Direct searches for extended Higgs sector
- Indirect BSM interpretations

→ Dominant production and decay modes consistent with SM with a precision of ~20%

Summary of ATLAS SUSY Searches

ATLAS SUSY Searches* - 95% CL Lower Limits **ATLAS** Preliminary Status: SUSY 2013 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7.8 \text{ TeV}$ e, μ , τ , γ Jets $\mathsf{E}_{\tau}^{\mathsf{miss}}$ $\int \mathcal{L} \, \mathsf{dt}[\mathsf{fb}^{-1}]$ Model **Mass limit** Reference 2-6 jets $m(\tilde{q})=m(\tilde{g})$ ATLAS-CONF-2013-047 MSUGRA/CMSSM 0 Yes 20.3 MSUGRA/CMSSM 3-6 iets 20.3 1.2 TeV any $m(\tilde{q})$ ATLAS-CONF-2013-062 $1e, \mu$ Ves MSUGRA/CMSSM 7-10 jets any $m(\tilde{q})$ Yes 20.3 1.1 TeV 1308 1841 2-6 jets 740 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-047 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 0 Yes 20.3 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ Yes 20.3 1 R TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-047 Yes 20.3 1.18 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV. } m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ ATLAS-CONF-2013-062 20.3 1.12 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-089 tanβ<15 Yes 4.7 1.24 TeV 1208.4688 tanβ >18 GMSB ($\tilde{\ell}$ NLSP) $1-2\tau$ Yes 20.7 ATLAS-CONF-2013-026 GGM (bino NLSP) 2γ Yes 48 1.07 TeV $m(\tilde{\chi}_1^0) > 50 \text{ GeV}$ 1209.0753 GGM (wino NLSP) $1e, \mu + \gamma$ Yes 4.8 $m(\tilde{\chi}_1^0) > 50 \text{ GeV}$ ATLAS-CONF-2012-144 GGM (higgsino-bino NLSP) 1 b Yes 4.8 $m(\tilde{\chi}_1^0)>220 \text{ GeV}$ 1211.1167 GGM (higgsino NLSP) $2e, \mu(Z)$ 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152 Gravitino LSP mono-jet Yes 10.5 $m(\tilde{g})>10^{-4} \text{ eV}$ ATLAS-CONF-2012-147 Yes 20.1 1.2 TeV $m(\tilde{\chi}_1^0)$ <600 GeV ATLAS-CONE-2013-061 gen. glunios med Yes 20.3 1.1 TeV $m(\tilde{\chi}_{1}^{0}) < 350 \,\text{GeV}$ 1308.1841 Yes 20.1 $m(\tilde{\chi}_1^0)$ <400 GeV ATLAS-CONF-2013-061 $m(\tilde{\chi}_1^0)$ <300 GeV 20.1 1.3 TeV ATLAS-CONF-2013-061 Yes 2 b 20.1 $m(\tilde{\chi}_1^0)$ <90 GeV 1308.2631 Yes 275-430 GeV $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 0-3 b Yes 20.7 $m(\tilde{\chi}_1^{\pm})=2 m(\tilde{\chi}_1^0)$ ATLAS-CONF-2013-007 $\tilde{\mathbf{b}}_1$ 1-2 b 110-167 GeV 1208.4305, 1209.2102 Yes 47 $m(\tilde{\chi}_1^0)=55 \text{ GeV}$ $\tilde{t}_1\tilde{t}_1$ 3 nd gen. squarks 20.3 $m(\tilde{\chi}_1^0) = m(\tilde{t}_1) - m(W) - 50 \text{ GeV}, m(\tilde{t}_1) < m(\tilde{\chi}_1^{\pm})$ ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 Yes 20.3 225-525 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 2 b Yes 20.1 150-580 GeV $m(\tilde{\chi}_1^0)$ <200 GeV, $m(\tilde{\chi}_1^{\pm})$ - $m(\tilde{\chi}_1^0)$ =5 GeV 1308.2631 Lindinget production 1 *b* Yes 20.7 200-610 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-037 320-660 GeV ATLAS-CONF-2013-024 2 b Yes 20.5 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ mono-jet/c-tag Yes 90-200 GeV ATLAS-CONF-2013-068

500 GeV

271-520 GeV

20.3

20.7

20.7

 $\tilde{\mathbf{t}}_2$

Yes

Yes

 $2e, \mu(Z)$

 $3e, \mu(Z)$

1 *b*

1 b

full data

 $\tilde{t}_1 \tilde{t}_1$ (natural GMSB)

 $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$

ATLAS-CONF-2013-025

ATLAS-CONF-2013-025

 $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)<85\,\text{GeV}$

 $m(\tilde{t}_1)=m(\tilde{\chi}_1^0)+180 \text{ GeV}$

 $m(\tilde{\chi}_1^0) > 150 \text{ GeV}$

^{*}Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Summary of CMS Exotic Searches

From 7/8TeV to 13/14TeV

Cross Section Ratios

for selected processes

Hugely increased potential for discovery of heavy particles at 13~14 TeV

Major Tasks at 13/14TeV & HL-LHC

- ☐ Study in great detail the Higgs boson
- ☐ Continue searches for new particles at TeV mass scale
- □ Continue SM precision measurements

To address (some of) the "big" questions:

- ◆ Is the Higgs boson solely responsible for EWSB?
- ◆ Is there new physics and what's its energy scale?
- ◆ Are fundamental parameters finely tuned?
- ◆ Are "elementary" particles composite?
- ◆ Are there new fundamental forces in nature?
- ◆ What's the non-baryonic dark matter (DM)?
- What's the origin of the matter-antimatter asymmetry?
- lacktriangle What's the origin of q, I and v mass hierarchies?

Big Questions vs. Big Ideas

Snowmass 1311.0299

Expectation with 13/14TeV and 300fb⁻¹

☐ Higgs:

- > Measure Higgs boson mass, spin, CP and couplings to the 10% level
- > Provide the 1st measurement of t-H coupling

☐ Top:

- > δm₊ below 600MeV
- \triangleright Measure top quark couplings to g, Z, W and γ by a factor 2-5 better (sensitive to new physics)

☐ Other precision measurements:

- $> \delta m_W \sim 8 MeV$
- > 1st measurement of VV scattering
- \triangleright Provide data for a new generation of proton PDFs, a well-defined γ PDF*

□ Searches:

- > Top squarks and partners
- > ttbar resonances predicted in models of composite top, Higgs
- > Other possible TeV-mass particles with × 2 better discovery reach
- > Dark Matter (DM)

PDF: Parton Distribution Function

Projection with 3000fb⁻¹

☐ Higgs:

- > Precision era for Higgs couplings 2-10%
- > Measure rate decays $\mu+\mu$ -, $Z\gamma$ with 100M Higgs bosons
- > Provide 1st evidence of Higgs self-coupling
- > Carry out powerful searches for extended Higgs bosons

☐ Top:

- $> \delta m_{t}$ below 500MeV
- > Intensive search for rare, flavor-changing, top quark couplings with 10B tops

☐ Other precision measurements:

- $> \delta m_W \sim 5 MeV$
- > precise measurement of VV scattering with access to Higgs sector resonances
- \triangleright Improve proton PDFs and γ PDF to higher x and Q^2

☐ Searches:

- > Top squarks and partners in extended mass range
- > 20-40% boost in discovery reach for generic new particle searches
- > Extend by × 2 the mass reach for particles produced in EW interactions

Precision Higgs Measurements

 κ_{μ}

BR_{RSM}*

Snowmass Higgs report, 1310.8361

Luminosity	$300 \; { m fb^{-1}}$	$3000 \; { m fb^{-1}}$	
Coupling parameter	7-parameter fit		
κ_{γ}	5-7%	2-5%	
κ_g	6 - 8%	3-5%	
κ_W	4-6%	2-5%	
κ_Z	4-6%	2-4%	
κ_u	14-15%	7-10%	
κ_d	10-13%	4-7%	
κ_ℓ	6 - 8%	2-5%	
Γ_H	12 - 15%	5 - 8%	
	additional parameters (see text)		
$\kappa_{Z\gamma}$	41 - 41%	10 - 12%	

Limited by theoretical systematic uncertainties,

23 - 23%

< 14 - 18%

→ Need advance in theoretical prediction on production and decay rates

8 - 8%

< 7 - 11%

^{*} Independent of direct search: ZH (→ invisible)
Zhiqing Zhang (LAL, Orsay)

Projection for m_t at LHC

Though less well defined theoretically (pole mass vs. MSbar mass), several (complementary) methods exist (e.g. the "end-point" method): (see 1404.1013)

CMS 1304.5783

Snowmass top report, 1311.2028

	Ref.[14]	Projections		
CM Energy	$7~{ m TeV}$	14 TeV		
Luminosity	$5fb^{-1}$	$100fb^{-1}$ $300fb^{-1}$ $3000fb^{-1}$		
Syst. (GeV)	1.8	1.0	0.7	0.5
Stat. (GeV)	0.90	0.10	0.05	0.02
Total	2.0	1.0	0.7	0.5

Including 0.3GeV unforeseen syst

Combining different methods, a precision of 0.3-0.4GeV is feasible

However need advances in understanding the relation between the measured and fundamental quantities

The most precise known method for extracting \mathbf{m}_{t} is from a threshold scan at a future lepton collider.

W Mass Measurement

An example of precision EW measurements

Snowmass report 1310.5189

TIIC

W mass is also special

- > the measured value remains 1-2 σ higher than the SM prediction
- $ightharpoonup \delta m_W$ currently limiting factor in the EW precision tests

To match $\delta m_t \sim 0.9 GeV$ $\rightarrow \delta m_W \sim 6 MeV$

ΔM_W [MeV]	LHC		
\sqrt{s} [TeV]	8	14	14
$\mathcal{L}[\mathrm{fb}^{-1}]$	20	300	3000
PDF	10	5	3
QED rad.	4	3	2
$p_T(W)$ model	2	1	1
other systematics	10	5	3
W statistics	1	0.2	0
Total	15	8	5

 $[\mathbf{N}/\mathbf{I}_{\alpha}\mathbf{X}/\mathbf{I}]$

 ΛII

PDF is the dominant syst uncertainty

Our Current Knowledge on PDFs

Snowmass report 1310.5189

The PDF uncertainty:

- > not only the dominant uncertainty for the W mass measurement
- > but also accounts for ~8% systematic error on the Higgs cross section
- \succ at high mass scale (high x) the uncertainty gets even larger

LHC do/will provide measurements for improving PDFs ep collider LHeC/FCC-eh would be ideal as demonstrated by HERA

An Example with Glunio Pair Production

CMS 1307.7135

Dominant SUSY production mode

$$R_{\rm sig(bkg)} = \frac{300\,{\rm fb}^{-1}}{20\,{\rm fb}^{-1}} \times \frac{\sigma_{\rm sig(bkg)}(14\,{\rm TeV})}{\sigma_{\rm sig(bkg)}(8\,{\rm TeV})}$$

Simple extrapolation without optimization

Another Example with Stop Pair Production

In SUSY, the Higgs mass is stabilized by a "light" (<1-1.5TeV) stop

Mass reach extends by $\sim 200 \, GeV$ from 300 to 3000 fb⁻¹

→ most of best motivated mass range will be covered at HL-LHC

Vector Boson Scattering (VBS)

The 1st process violates unitarity: $\sigma \sim E^2$ at $m_{WW} \sim TeV$ (divergent cross section \rightarrow unphysical) if the 2nd process does not exist

- \rightarrow Important to verify that Higgs(126GeV) accomplishes this task \rightarrow a crucial "closure test" of the SM
- \rightarrow Need $\sqrt{s} \sim 14$ TeV and ~ 3000 fb⁻¹

If no new physics: good behavior of SM cross section can be measured to 30% (10%) with 300 (3000) fb⁻¹

If new physics: sensitivity increases by ~ 2 (in terms of scale and coupling reach) between 300 and 3000 fb⁻¹

→ HL-LHC is crucial for a sensitive study of EWSB dynamics

Possible Scenarios In Next Years/Decade

- □ LHC and/or HL-LHC find new physics:
 - the heavier part of the spectrum may not be fully accessible at $\sqrt{s} \sim 14$ TeV \rightarrow strong case for a 100 TeV pp collider: complete the spectrum and measure it in some detail
- \Box LHC and/or HL-LHC find indications for the scale of new physics being in the 10-50 TeV region (e.g. from dijet angular distributions \rightarrow Λ Compositeness)
 - → strong case for a 100 TeV pp collider: directly probe the scale of new physics
- □ LHC and HL-LHC find no new physics nor indications of next energy scale
 - → Missed due to small cross sections or difficult experimental signatures?
 - → A precision e+e- machine may be a good choice to find new guidance for future direction

Hadron Collider vs. e+e-(lepton)

Hadron Collider:

SppC (Super proton-proton Collider), China FCC-hh (Future Circular Collider), CERN

e+e- Collider:

ILC (International Linear Collider), Japan?

CLIC (Compact LInear Collider), CERN

CEPC (Circular Electron Positron Collider), China

FCC-ee (TLEP), CERN

Muon collider (μC), Fermilab?

- + Energy frontier
 - → large direct discovery potential
- Precision measurement challenging
 - Pile-up
 - UE, MPI*
 - Composite proton → PDF uncertainty
 - large theoretical (QCD) corrections

+ Precision frontier

- Clean experimental environment
- Known √s
- Beam polarization (linear collider)
- Precise theoretical predictions
- Lower √s
 - → still large indirect scale reach

^{*}UE: Underlying Event; MPI: Multi-Parton Interaction

A Few Machine Parameter Comparison

	ILC	CLIC	CEPC50	FCC-ee	SppC	FCC-hh
√s (GeV)	250/500	500/3000	240	240/350	50/90TeV	80/100TeV
Length/circum (km)	7 ~30	13/48	50	80/100	50/70	80/100
Lumi (10 ³⁴ cm ⁻² s ⁻¹)	0.75/1.8	2.3/5.9	2.6	5.9/1.8	22/29	
Polarization e-, e+ (%)	80, 30	80, 30				
#IP	1	1	2	4	2	4
Mean gradient (MVm ⁻¹)	14.7/31.5	150				
RF voltage (GV)			4.2	6/12		
B (T)					12/19	16/20

Physics Goal vs. Is at a e+e- Collider

ILC TDR

Circular vs. Linear

TLEP (250) offers a factor 10 more lumi than ILC(250)

→ a factor 3 improvement in Higgs boson coupling measurements however precision measurements are often not stat limited

Linear collider provides longitudinal beam polarization

Higgs Couplings: Why & What Precision?

Snowmass, Higgs, 1310.8361

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2\mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

→ Up to 10% deviation from SM in different BSM models

Or in terms of new physics scale Λ (TLEP 1308.6176):

$$\frac{\delta g_{\rm HXX}}{g_{\rm HXX}^{\rm SM}} \leq 5\% \times \left(\frac{1{\rm TeV}}{\Lambda}\right)^2$$

Larger deviation up to 20% on self-coupling, but it's more difficult to measure experimentally

Comparison of Expected H Coupling Precision

Snowmass, Higgs, 1310.8361

Facility	LHC	HL-LHC	ILC500	CLIC	TLEP (4 IPs)
\sqrt{s} (GeV)	14,000	14,000	250/500	350/1400/3000	240/350
$\int \mathcal{L}dt \ (\text{fb}^{-1})$	$300/\mathrm{expt}$	3000/expt	250+500	500+1500+2000	10,000+2600
κ_{γ}	5-7%	2-5%	8.3%	$-/5.5/{<}5.5\%$	1.45%
κ_g	6-8%	3-5%	2.0%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.49/0.33/0.24%	0.05%
κ_{ℓ}	6-8%	2-5%	1.9%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14-15%	7-10%	2.5%	3.1/1.0/0.7%	0.69%

→ e+e- colliders are expected to be more precise

Circular e+e- collider is doing best

Low SM Background Rate at e+e- Collider

Higgs Production at e+e- Machine

In addition to model independent λ and BR measurements, HZ process also provides a very precise Higgs mass measurement using recoil mass technique

$$m_{\text{recoil}}^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

→Only based on Z and \(\int \) but independent of H final state

HZ+vvH → precise and model independent width measurement

Comparison of Mass and Width Measurement

Snowmass, Higgs, 1310.8361

Facility	LHC	HL-LHC	ILC500	CLIC	TLEP (4 IP)	μC
\sqrt{s} (GeV)	14,000	14,000	250/500	350/1400/3000	240/350	126
$\int \mathcal{L}dt \ (\mathrm{fb^{-1}})$	300	3000	250+500	500 + 1500 + 2000	10,000+2600	4.2
$m_H \text{ (MeV)}$	100	50	32	33	7	0.06
Γ_H	_	_	5.0%	8.4%	1.0%	4.3%

Why precision Higgs mass measurement?

- → Check the EW vacuum stability
- → Check the mass relation in a BSM model

The Fate of the Universe (EW Vacuum)

Measured top and Higgs masses seem to place the SM vacuum on the very margin of stability

→ Precision measurement of H & top masses crucial
To match $\delta m_H \sim 150 MeV$, δm_t should be < 100 MeV!

If no new physics at the TeV scale to which scale the SM is valid?

Renormalization group equation \rightarrow running of Higgs coupling $\lambda(\mathbb{Q})$

The instability scale Q is defined as the scale at which λ_{eff} =0

Any connection with new physical scale? If yes, it's well beyond any collider reach

Precision Top Quark Mass Measurements

Precise measurement of σ at the ttbar production threshold is sensitive to

- top-quark pole mass, m_t,
- total top quark decay width,
- Yukawa coupling of the top quark to Higgs

 $\delta m_{t} \sim 80 MeV$ combining hadronic and semihadronic $t \rightarrow Wb$ decays

BS: Beamstrahlung effect

Comparison of Precision Mass Measurements

Grojean, FCC 14

Parameter	Present LHC IL	C/GigaZ TLEP
M_H [GeV]	0.4 ⇒< 0.1	< 0.1 < 0.1
M_W [MeV]	$15 \Rightarrow 8 \Rightarrow$	$5 \Rightarrow 1.3$
M_Z [MeV]	2.1* 2.1	$2.1 \Rightarrow 0.1$
m_t [GeV]	$0.9 \Rightarrow 0.6$	0.1 0.08

In all cases, systematic uncertainty dominates

^{*}LEP line shape scan ($1.2_{\rm stat}+1.7_{\rm beam\ calib}$), TLEP improvement relies on continuous measurement with resonant depolarization of single bunches

Search Capabilities @ LHC, Future Colliders

- ✓ TeV mass particles are needed in essentially all models of new physics
 → The search for them is imperative
- ✓ LHC and future colliders all give impressive capabilities for the search
- √ The search for TeV mass particles is integrally connected to searches for DM

DM Search with Mono γ /jet Events

Naturalness & Degree of Fine-Tuning

$$arepsilon \sim \left(rac{125}{M_{
m NP}}
ight)^2$$

- ♦ If NP* is at TeV scale, ϵ ~1% (LHC & e+e-)
- ◆ If NP is at 10TeV scale, ε ~10⁻⁴ (direct: SppC, FCC-hh; indirect: e+e-)
- ◆ If no NP up to Planck scale, ϵ ~10⁻³⁴

Naturalness (argument) has been a guiding principle for NP model construction

An aesthetic or physical criterion?

The key point: what's the real NP scale?

NP: New Physics

Possible Timeline

NP: New Physics

Summary

☐ The Higgs boson is least well studied sector in the SM LHC as a Higgs factory is doing a good job though not for all model-independent studies → e+e- Higgs factory can do more/better ☐ If no new physics signal found at the LHC in next years/decade A high energy precision collider may be a good way to find a clear guidance for future ☐ To have several different complementary high energy colliders ideal but likely unrealistic ☐ Whatever the choice, we need to be prepared with active machine & detector R&D program ☐ Shall try all possibilities: high energy colliders, intensity-frontier experiments, astroparticle experiments, neutrino experiments, dedicated searches Indeed, all BSM evidences* are found so far by non-accelerator experiments! But high energy colliders are good for both discovery and precision measurements

*BSM evidences: non-bayonic DM, neutrino mass, dark energy, apparently acausal density fluctuations, baryon asymmetry

CEPC/SppC

FCC-ee,hh,eh

Higgs Portal vs. Direct DM Searches

ATLAS, 1402.3244

Interpret H→ invisible search results in Higgs portal model (hep-ph/0605188) in which the Higgs mediates interaction between DM and SM particles

