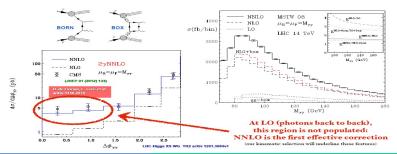
Measurement of the differential cross section for the production of isolated diphotons in pp collisions at $\sqrt{s} = 7 \, TeV$

G.Chen, <u>J.Fan</u>, J.Tao, Y.Shen, S.Gascon-Shotkin, M.Lethuillier, L.Sgandurra, B.Courbon

IHEP-Beijing/IPN-Lyon

FCPPL@Clermont-Ferrand/France



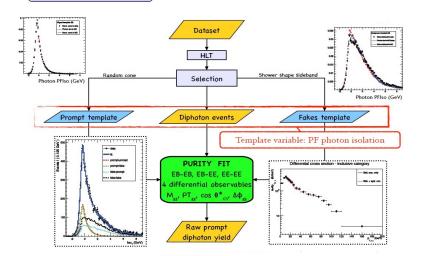
Outline

- Introduction
- Analysis strategy
 - SuperCluster footprint removal method
 - Prompt and fake photon template
 - Fitting technique
 - Efficiency correction and unfolding
 - Systematic uncertainties
- Conclusion

Jiawei FAN 2/21

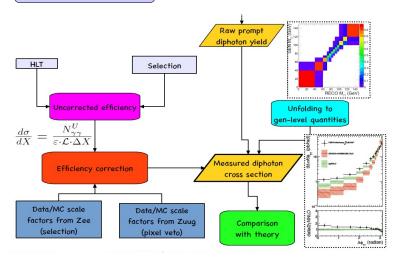
- Diphoton events as a probe of perturbative QCD @NNLO
- lacktriangle Major source of background for the $H o\gamma\gamma$ analysis
- CMS approved analysis(AN-2013/034, SMP-13-001), CMS Final Reading, will submit to EPJC
- Recent theory result: 10.1103/PhysRevLett.108.072001(Catani, Cieri, de Florian, Ferrera, Grazzini)

Analysis strategy

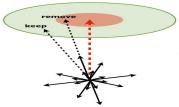

$$rac{d\sigma}{dX} = rac{N_{\gamma\gamma}^U}{\epsilon \cdot \mathcal{L} \cdot \Delta X}$$
 $(X = m_{\gamma\gamma}, Pt_{\gamma\gamma}, \Delta\phi_{\gamma\gamma}, |cos\theta^*|)$

Goal: extract, on a statistical basis, the number of events with two prompt isolated photons

- ▶ Data samples: CMS 2011 7TeV data
- ▶ Integrated luminosity: (5.0 ± 0.1) /fb
- ► High-level Trigger: Diphoton triggers with pt threshholds {22, 36}
 GeV
- Selections:
 - **①** Preselection cuts as in 2011 $H \rightarrow \gamma \gamma$
 - Selection on ratio of the energy deposited in HCAL and Ecal, selection on shower shapes
 - Kinematic selection

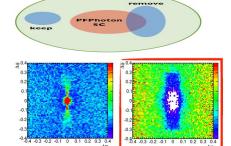

Analysis strategy

Analysis workflow I



Analysis strategy

Analysis workflow II

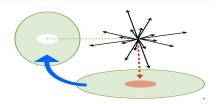

Jiawei FAN 6/2

PF(Particle Flow) candidates that are overlapping with its SuperCluster are considered part of its footprint and removed from the isolation.

EE, no PF ID

- propagate the reconstructed
 PFCandidate until the surface
 of ECAL
- check if it hits the surface of a crystal inside the SuperCluster
- if it does, remove it from isolation sum

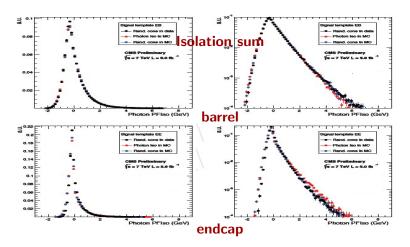
Removel example


EE, new removal

iawei FAN

Prompt photon template

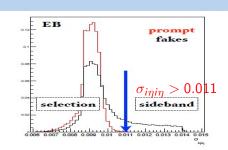
The template for prompt photons is built from data with the random cone technique

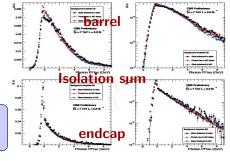

- Rotate the isolation cone by a random angle in ϕ
- Underlying activity does not change (same η)
- Check that no other SC or jet is nearby
- compute the isolation sum in the rotated cone for each event and build its distribution

Assumption:

Once the photon footprint has been removed, the isolation sum for prompt photons is due only to pileup and underlying event.

Prompt photon template

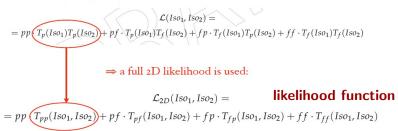



Random cone reproduces very well the isolation around prompt photons

Fake photon template

- ► Fake photons are jets passing the selection, i.e. isolated neutral mesons
- $ightharpoonup \sigma_{i\eta i\eta}$: the transverse shape of the electromagnetic cluster
- ► Template for fake photons is built with the $\sigma_{i\eta i\eta}$ sideband method
- Inverting the cut on $\sigma_{i\eta i\eta}$

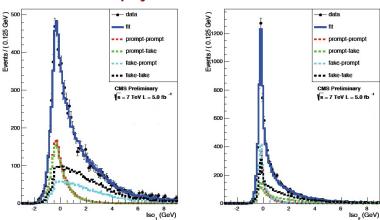
The sideband method reproduces very well the isolation for the fakes



Fitting technique

- One event two photons, the likelihood model should describe their correlations
- ▶ Sources of correlation: Pileup, Fluctuation of pile-up energy density
- 2D likelihood to fit for prompt-prompt (pp), prompt-fake (pf), fake-prompt (fp) and fake-fake (ff) fractions

(Iso_I, Iso_2) "factorized" likelihood does not work:

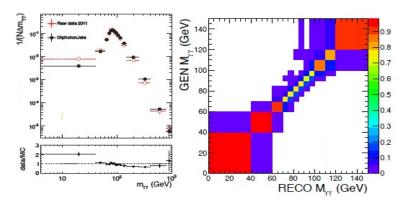


Jiawei FAN 11/2

Fitting technique

Result of the 2D fit: extraction of prompt-prompt purity

1D projections of the 2D fit



Example of EB-EE final fit

Jiawei FAN 12/21

Unfolding

- The measured diphoton yield is unfolded to gen-level quantities
- Observable distributions reweighted to raw measured yields

Typical order of magnitude of the effect of unfolding: 5%

Efficiency correction

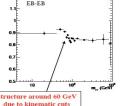
The raw diphoton yield is corrected for efficiency:

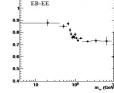
- Trigger efficiency
- Selection efficiency from diphoton MC
- ▶ Data/MC scale factor from $Z \rightarrow ee$ and $Z \rightarrow \mu\mu\gamma$ (for pixel veto)

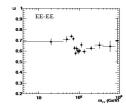
Analysis strategy

$$\begin{array}{l} \epsilon_{\gamma\gamma} = \\ \epsilon_{trigger} x \epsilon_{reco\&sel} x C_{\gamma1}^{Z \to e^+e^-} x C_{\gamma2}^{Z \to e^+e^-} x C_{\gamma1}^{Z \to \mu^+\mu^-\gamma} x C_{\gamma2}^{Z \to \mu^+\mu^-\gamma} \end{array}$$

Trigger efficiency w.r.t. selection is measured from $Z \rightarrow ee$ Tag and Probe:


Both photons in barrel		One or more in endcap	
$min(R_9) > 0.94$	$min(R_9) < 0.94$	$min(R_9) > 0.94$	$min(R_9) < 0.94$
100.00±0.01±0.00%	99.3±0.04±0.10%	100.00±0.02±0.00%	98.8±0.06±0.4%


liawei FAN


Efficiency correction

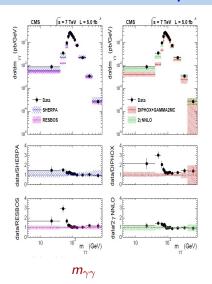
The diphoton "raw" selection efficiency is taken from the MC

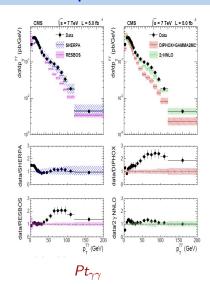
$$\epsilon_{reco\delta csel} = \frac{N_{sem}^{sim}(X_i)[\eta_{reco} \in Acc, E_T^{\gamma_{1reco}} > 40 GeV, E_T^{\gamma_{2reco}} > 25 GeV, \text{IDselection}, X_{gen} \in Bin_i]}{N_{gen}^{sim}(X_i)[\eta_{gen} \in Acc, E_T^{\gamma_{1gen}} > 40 GeV, E_T^{\gamma_{2gen}} > 25 GeV, X_{gen} \in Bin_i]}$$

Scale factors close to 1

- ▶ Data/MC selection scale factor from $Z \rightarrow ee(T\&P)$
- ► The data/MC scale factor for the pixel veto efficiency extracted from $Z \rightarrow \mu\mu\gamma$

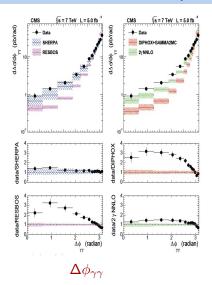
	Probe object	in ECAL barrel	
E _T bin (GeV)	Edwa	EMC	eana/emc
25-35	$0.948\pm0.001(stat.)\pm0.007(syst.)$	$0.956\pm0.004(stat.)\pm0.007(syst.)$	0.991±0.008(tot.
35-40	$0.949\pm0.001(stat.)\pm0.007(syst.)$	$0.961\pm0.002(stat.)\pm0.007(syst.)$	0.988±0.007(tot.
40-45	$0.966\pm0.001(stat.)\pm0.007(syst.)$	$0.972\pm0.001(stat.)\pm0.007(syst.)$	0.993±0.007(tot.
45-50	$0.974\pm0.001(stat.)\pm0.007(svst.)$	$0.977\pm0.001(stat.)\pm0.007(syst.)$	0.996±0.007(tot.
>50	$0.981\pm0.002(stat.)\pm0.007(svst.)$	$0.985\pm0.005(stat.)\pm0.007(syst.)$	0.996±0.009(tot.
	Probe object	in ECAL endcap	
E _T bin (GeV)	edua .	€MC	eana/emc
25-35	$0.935\pm0.007(stat.)\pm0.008(syst.)$	$0.934\pm0.004(stat.)\pm0.008(syst.)$	1.001±0.012(tot.
35-40	$0.949\pm0.002(stat.)\pm0.008(syst.)$	$0.936\pm0.007(stat.)\pm0.008(syst.)$	1.014±0.011(tot.
40-45	$0.968\pm0.001(stat.)\pm0.008(syst.)$	$0.958\pm0.002(stat.)\pm0.008(syst.)$	1.010±0.008(tot.
45-50	$0.978\pm0.001(stat.)\pm0.008(syst.)$	$0.967\pm0.003(stat.)\pm0.008(syst.)$	1.011±0.008(tot.
>50	$0.989\pm0.001(stat.)\pm0.008(syst.)$	$0.979\pm0.002(stat.)\pm0.008(syst.)$	1.010±0.008(tot.

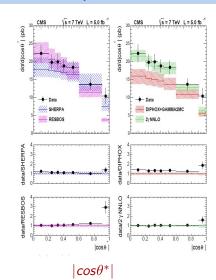

η bin	ϵ_{data}	€ _{MC}	$\epsilon_{data}/\epsilon_{MC}$
0-1.4442	0.963 ± 0.006(stat.)	$0.959 \pm 0.003 (stat.)$	$1.004 \pm 0.009 (total)$
1 566-2 5	0.871 ± 0.017(stat.)	0.850 ± 0.011(stat.)	1.025 ± 0.021(total)


Systematic uncertainties

- Systematics on the purity measurement:
 - Template shape description
 - Statistical fluctuations of the templates
 - **3** Uncertainty on $Z \rightarrow ee$ subtraction(max 2%)
 - **3** Bias from the fit procedure(< 0.5%)
- Other systematics on:
 - Efficiency correction(typically 4%)
 - Unfolding(1%)
 - Integrated luminosity(2.2%)

Source of uncertainty	
Prompt template shape (EB)	3%
Prompt template shape (EE)	5%
Non-prompt template shape (EB)	5%
Non-prompt template shape (EE)	10%
Effect of fragmentation component	1.5%
Template stat. fluctuation	3%
Selection efficiency	2-4%
Integrated luminosity	2.2%


Cross Section Result compared to Theoretical predictions



iawei FAN 17/21

Cross Section Result compared to Theoretical predictions

awei FAN 18/21

The total cross section measured in data (with a total uncertainty of 11%) is:

$$\sigma_{data} = 17.2 \pm 0.2 (stat.) \pm 1.9 (syst.) \pm 0.4 (lumi) pb$$

This compares to theory predictions:

$$\sigma_{
m NNLO}(2\gamma {
m NNLO}) = 16.2^{+1.5}_{-1.3}({
m scale}) {
m pb}$$

$$\sigma_{
m NLO}({
m DIPHOX+GAMMA2MC}) = 11.7^{+1.2}_{-1.1}({
m scale})^{+0.6}_{-0.6}({
m pdf}+\alpha_s) {
m pb}$$

$$\sigma_{
m NLO}({
m RESBOS}) = 14.9^{+2.2}_{-1.7}({
m scale}) \pm 0.6({
m pdf}+\alpha_s) {
m pb}$$

$$\sigma_{
m LO}({
m SHERPA}) = 15.2^{+3.2}_{-1.9}({
m scale}) {
m pb}$$

Very good agreement with the NNLO calculation

liawei FAN

Conclusion

- Differential variables: $m_{\gamma\gamma}, Pt_{\gamma\gamma}, \Delta\phi_{\gamma\gamma}, |cos\theta^*|$
- The differential cross section for prompt diphoton production has been measured with CMS 2011 7TeV 5/fb data
- Fully data-driven methods have been used to build the templates for the determination of prompt diphoton yields
- Results have been compared to different theory predictions, best agreement with the NNLO calculation

Jiawei FAN 20/2

Backup