Table of contents Selection Photon Energy Scale Other applications Summary

$Z \rightarrow \mu \mu \gamma$ selection and applications

C. Carrillo, G. Chen*, B. Courbon, S. Gascon-Shotkin, J. Fan**, M. Lethuillier, L. Sgandurra, P. Soulet, J. Tao*

IPN Lyon, * IHEP Beijing, ** IPNL/IHEP

FCPPL workshop, 7.04.14

Table of contents
Introduction
Selection
Photon Energy Scale
Other applications
Summary

Table of contents

- Introduction
- Selection
 - Signal and background
 - Selection Strategy
 - Number of events and purity
- Photon Energy Scale
 - Estimator
 - Extraction method
 - Results
- Other applications
 - Photon ID MVA validation
 - ullet Electron veto efficiency and $V\gamma$ systematics
- Summary

Introduction

ECAL energy reconstruction :

$$E_{e,\gamma} = F_{e,\gamma} \times G(GeV/ADC) \sum_{crystals} S_i(T,t) \times c_i \times A_i$$

- A_i: reconstructed amplitude in ADC counts
- c_i: inter-calibration constant
- S_i: transparence loss correction
- $F_{e,\gamma}$: object-dependant high-level correction
- G: global energy scale, need to be calibrated using "standard candles":
 - $Z \rightarrow ee$: main "standard candle"
 - ullet $Z
 ightarrow \mu \mu \gamma$: cross check
- Advantages of the $Z o \mu \mu \gamma$ channel :
 - Very pure selection of photons
 - ullet The photons have high $P_{\mathcal{T}}$ compared to the ones from π^0 and η decays
 - Good knowledge of the Z boson
 - Good reconstruction of the muons in CMS

Signal and background

• **Signal** : $Z \rightarrow \mu\mu\gamma$ with Final State Radiation (FSR)

- Backgrounds :
 - ullet $Z
 ightarrow \mu \mu \gamma$ non-FSR (ISR or pile-up)
 - $W \to \mu \nu \gamma$ (another μ produced in a recoil jet)
 - $t\bar{t} \rightarrow \mu\mu\nu\nu\gamma$
 - QCD

Selection strategy

- Dimuon Trigger $(P_{T,\mu_1} > 17 \text{ GeV and } P_{T,\mu_2} > 8 \text{ GeV})$
- Collision data cleaning (good vertexing, no beam scrapping...)
- Skimming
- Muon object selection
- ullet Dimuon selection (opposite signs, invariant mass not compatible with the Z)
- Photon selection (P_T > 25 GeV)
- FSR selection

Number of events and purity

- The purity with the previous selection is 98%
- Good agreement between DATA and MC
- The rate of selected events is found to be 1.12/pb⁻¹

E, [GeV]

Estimator

- ullet Photon energy scale correction : $k=rac{E_{\gamma,TRUE}}{E_{\gamma,RECO}}$
- We define s :

$$s = rac{1}{k} - 1 = rac{E_{\gamma,RECO}}{E_{\gamma,TRUE}} - 1 \simeq \left| egin{array}{c} rac{M_{\mu\mu\gamma,R}^2 - M_{\mu\mu,R}^2}{M_Z^2 - M_{\mu\mu,R}^2} - 1 \end{array}
ight.$$

- Approximations :
 - We assume that we reconstruct perfectly the energy and the directions of the muons
 - ullet We replace the true invariant mass $M_{\mu\mu\gamma,T}$ by $M_Z=91.187$ GeV

ightarrow We have built a completely data-driven estimator, which has been proven to be unbiased for $P_{T,\gamma}>20$ GeV

Extraction method

- We compute our estimator for each photon, and we make an unbinned fit of the "s" distribution with a Voigtian (convolution of a Gaussian and a Breit-Wigner).
 The extracted energy scale is the mean of the Voigtian.
- The choice of the fit range is optimized
- We split events into 3 categories depending on the ECAL region (barrel or endcaps) and the R9 variable (which determines if a photon is converted or not)
- This method is one of the two methods approved by the CMS collaboration ("Direct Fit Method")
- The sources of systematic uncertaincies are :
 - the muon energy scale
 - the fit range choice
 - the fit function choice (not in the next results)

Results (EB, high R9)

EB: barrel of the ECAL, high R9: not converted photons

Results (EB, inclusive)

SRECOData

Results (EE, inclusive)

EE : endcaps of the ECAL

SRECOMC

SRECOData

Results (Summary table)

Categories	$s_{Data}(\%)$	s _{MC} (%)
Barrel High R9	$1.49 \pm 0.24 \pm 0.05$	$0.23 \pm 0.13 \pm 0.15$
Barrel inclusive	$1.73 \pm 0.17 \pm 0.16$	$0.82 \pm 0.12 \pm 0.10$
Endcaps inclusive	$0.48 \pm 0.46 \pm 0.10$	$0.29 \pm 0.19 \pm 0.05$

Conclusion

- The photon energy scale agrees to within 1.3% between DATA and MC.
- The energy scale agrees to better than 0.5% with that obtained using the other approved method.

 $Z \rightarrow \mu \mu \gamma$

Photon ID MVA validation

- The photon ID is a multivariate analysis which is used to distinguish prompt photons from fake photons (neutral mesons)
- ullet This tool is particularly important in $H o \gamma \gamma$ analysis
- \bullet We can use $Z\to \mu\mu\gamma$ events to compare the photon ID output distributions for data and MC : ${\bf good~agreement}$

Electron veto efficiency and $V\gamma$ systematics

- We can use our selection to calculate the electron veto efficiency
- The electron veto aims to reject electrons which mimic photons
- To compute the efficiency for photons, we use the method "tag and probe": we tag the FSR event with the pair of muon, and we probe the efficiency with the assiocated photon
- The efficiency for photons is 96.1% for DATA and 97.4% for MC
- $Z \to \mu\mu\gamma$ channel is also used to compute the systematic uncertaincy on the photon energy scale and resolution in the $V\gamma$ production measurment
- \bullet This affects the reconstruction efficiency of final state objects by $\sim 4\%$ for the energy scale and by $\sim 1\%$ for the resolution

Table of contents
Introduction
Selection
Photon Energy Scale
Other applications
Summary

Summary

- This channel provides a very pure selection of high P_T photons
- Its main application is the extraction of the photon energy scale (one of two methods approved by the collaboration)
- ullet There are other applications such as the photon ID MVA validation, the electron veto efficiency calculation and the systematics estimation for the $V\gamma$ production measurment...
- \bullet This good knowledge of the photon object is then very useful in the $H\to\gamma\gamma$ analysis

Table of contents
Introduction
Selection
Photon Energy Scale
Other applications
Summary

References

- \bullet Photon Energy Scale with $Z \to \mu \mu \gamma$ events, CMS Collaboration, CMS DP -2012/024
- Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $\sqrt{s} = 7$ TeV, CMS Collaboration, arXiv :1036 :2016v2
- Measurement of W-gamma and Z-gamma production in pp collisions at $\sqrt{s}=7$ TeV, CMS Collaboration, arXiv :1105.2758
- ullet Extraction of the photon energy scale with $o \mu\mu\gamma$ events in CMS, Louis Sgandurra on behalf of the CMS Collaboration, 2013 LHC France Poster Session