$H \rightarrow \gamma \gamma$ in CMS

C. Carrillo, B. Courbon, S. Gascon-Shotkin, M. Lethuillier, L. Sgandurra, P. Soulet, G. Chen, M. Chen, J. Tao, J. Fan

7th France China Particle Physics Laboratory (FCPPL) Workshop

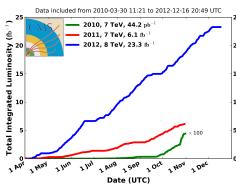
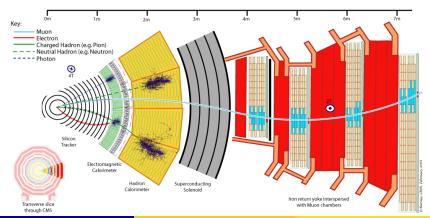

IPNL IHEP IHEP,IPNL 08/04/2014

Table of contents

- Introduction
 - LHC
 - CMS
- 2 Higgs Physics
- 3 Analysis Strategy
 - \sqrt{s} =8 TeV categories
- **4** $H \rightarrow \gamma \gamma$ results
 - p-value
 - mass
 - width
 - For the future
- **6** Conclusions
- Backup

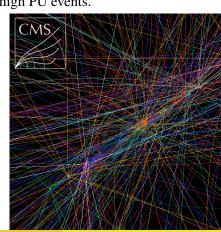
Data: pp collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV.


CMS Integrated Luminosity, pp

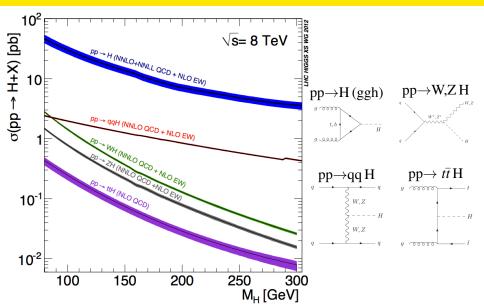
- LHC excellent performance in 2011 and 2012 data taking
- $\int L dt \approx 25 fb^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ and $\sqrt{s} = 8 \text{ TeV}$
- Peak Instant Luminosity: $L = 7.7 \times 10^{-33} \text{ cm}^{-2} \text{s}^{-1}$
 - Excellent performance during 2011 and 2012.

CMS

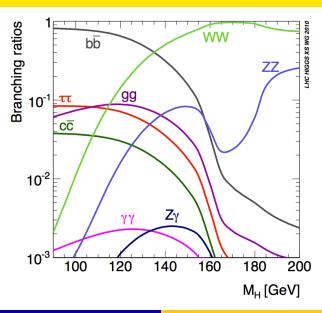
- Multi purpose experiment
- Data efficiency recording (used for analysis) > 90%
- Robust Muon system, lead tungstate crystals used in the CMS ECAL.
- Global Event Description with Particle Flow Algorithm



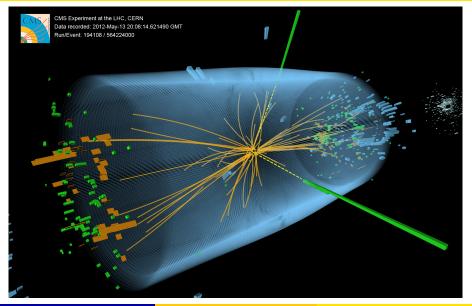
Pile Up (PU)


- Due to the increase in luminosity, more than one collision happen during a bunch-crossing in the LHC, this is pile up (PU).
- 2011 average PU \approx **10**, for 2012 average PU \approx **20**.
- Particle flow algorithm helps a lot in high PU events.

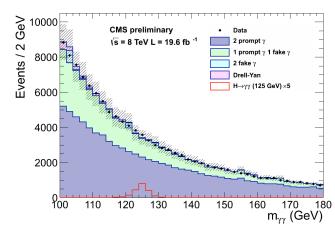
Challenges for event reconstruction with high PU.


- Less energy resolution for e and γ
- Energy from underlying events added to isolation cones.
- Central jet veto and VBF jet tagging affected.
- For LHC Run-II at $\sqrt{s} = 13 \, TeV$ in 2015 are expected PU ≈ 40 .

Higgs production modes



Higgs Decays, branching ratios


Branching ratios, Higgs $\rightarrow \gamma \gamma$ is a small part, $\approx 2 \times 10^{-3}$, however is the channel with the best mass resolution and one with the highest sensitivities.

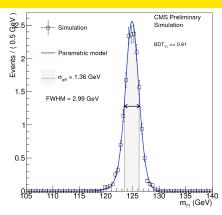
An event display, $m_{\gamma\gamma} = 125.9 \, GeV$

The Background

- Irreducible: $\gamma \gamma$ from QCD
- Reducible: γ +jet with 1 + fake γ . QCD, 2 fake γ 's. DY, electrons faking γ .

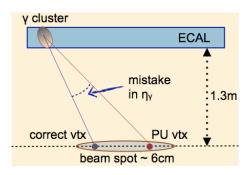
The event selection

L1 Trigger: L1 DoubleEG 13 7 OR L1 SingleEG 22


High Level Trigger selection:

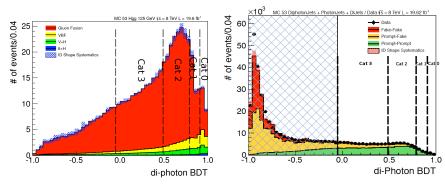
- 194 HLT Photon26 R9Id85 OR CaloId10 Iso50 Photon18 R9Id85 OR CaloId10 Iso50 Mass60 v5 OR
- 195 HLT Photon26 R9Id85 OR CaloId10 Iso50 Photon18 R9Id85 OR CaloId10 Iso50 Mass70 v1 OR
- 205 HLT Photon36 R9Id85 OR CaloId10 Iso50 Photon22 R9Id85 OR CaloId10 Iso50 v5

There are two independent offline event selections in $H \to \gamma \gamma$


- MVA:Multivariate analysis. based on isolation, shower shape and electron rejection.
- CiC: Cut base optimization in different Categories with different background levels, barrel/endcap and converted/unconverted identified with shower shape in ECAL.

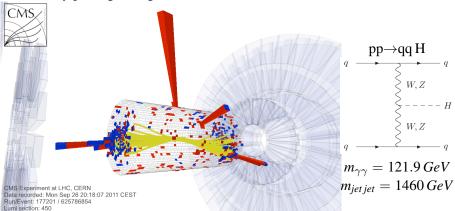
Mass resolution and vertex id

Calibration done with:

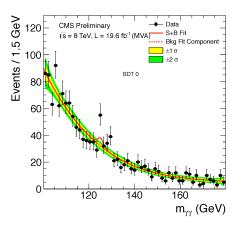

- $Z \rightarrow ee$ and $\pi^0 \rightarrow \gamma \gamma$
- $W \to e\nu \left(\frac{E}{p}\right)$
- Laser corrections (transparency)

- Primary vertex identified with tracks from recoiling jets and underlying events.
- 80% good identifications with high PU.

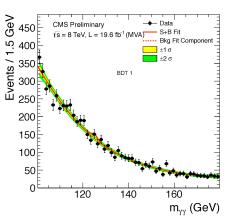
11/28


BDT Tree

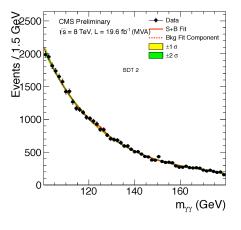
- 4 categories.
- The input for the BDT: Kinematic information, Photon Id classifier, estimated mass resolution.
- Additional categories for vector boson fusion and associated W,Z production.

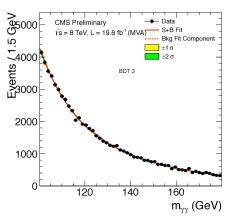

$H \rightarrow \gamma \gamma$ exclusive channels VBF

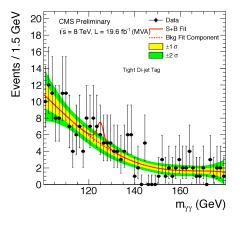
In order to profit specific production processes the background could be reduced by putting stronger cuts in the event selection.

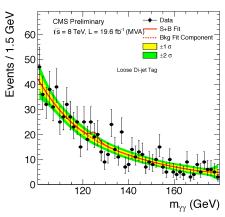


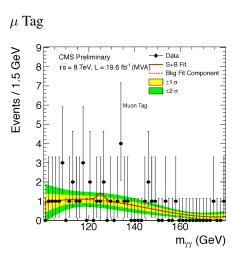
- For VBF two energetic jets.
- For W,Z H l+MET tag to address: $W \to l\nu$, $Z \to \nu\nu$ and $Z \to ll$.


BDT cat 0

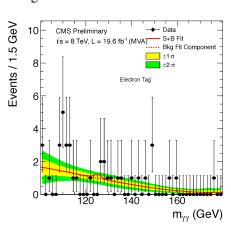

BDT cat 1


BDT cat 2

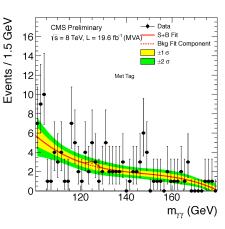

BDT cat 3



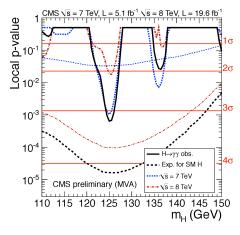
Tight Di-jet Tag



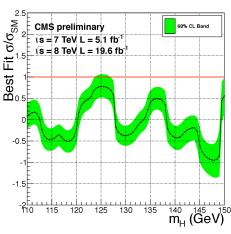
Loose Di-jet Tag



e Tag

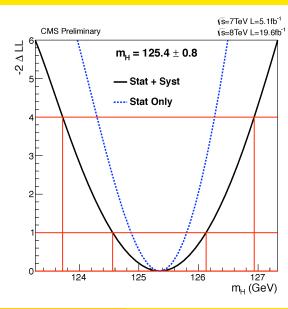


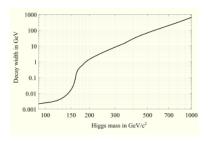
MET Tag



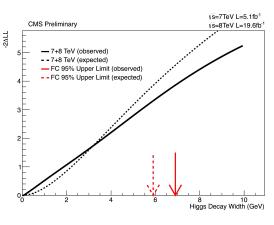
C. Carrillo (IPNL)

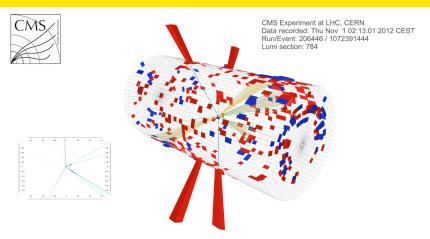
$H \rightarrow \gamma \gamma$ results, p-value


- Largest excess at $m_H \approx 125 \, \text{GeV}$
- signif. $\rightarrow 3.2\sigma$
- expect. $\rightarrow 4.2\sigma$

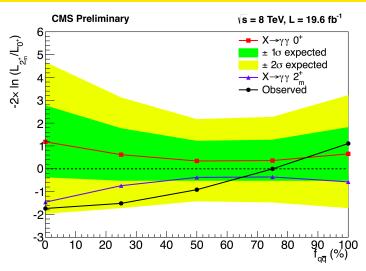

- Consistent results with CiC.
- The Higgs is still there!

$H \rightarrow \gamma \gamma$ results, mass


- m_H is not predicted by theory
- All predictions for SM fully determined once the mass is know
- The first precision measurement of the properties of the new boson
- m_H =125.4 ± 0.5(stat) ± 0.6 (syst) GeV


$H \rightarrow \gamma \gamma$ results, width

- SM prediction: $\Gamma_H \approx 4 \,\mathrm{MeV}$ measurement limited by experimental resolution:
- $\Gamma_H < 6.9 \,\text{GeV}, 95\% \,\text{C.L.}$
- (expected 5.9 GeV)



For the future, tt H

- Not yet part of the overall estimation
- Requires b-tagging and large jet multiplicity

Spin

- Clear prediction of the Standard Model: Higgs boson is a 0 spin state
- The spin is not yet measured, different hypothesis are being tested.

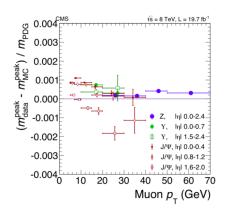
23 / 28

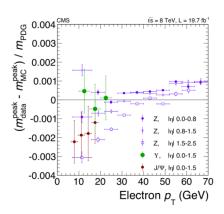
Conclusions

- The CMS $H \to \gamma \gamma$ strategy has been presented.
- Results with the full dataset 2011-2012 \sqrt{s} 7 Tev and 8 TeV for the LHC Run-I:
 - p-value: 3.2σ
 - mass: m_H =125.4 ± 0.5(stat) ± 0.6 (syst) GeV
 - width: $\Gamma_H < 6.9 \,\text{GeV}, 95\% \,\text{C.L.}$
 - **spin:** (Compatible with spin 0^+ hypothesis)
- m_H is the first precision measurement
- Uncertainties mostly dominated by statistics.
- The tests for the SM predictions have begun.
- More to come for the next years.

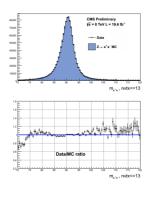
Web references

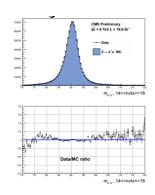
• All CMS Higgs Public results

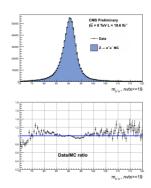

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG


Backup

Backup




Lepton momentum scale



e γ energy reconstruction stability

