

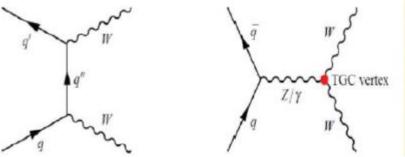
Measurement of the WW Production Cross Section in Proton-Proton Collisions with the ATLAS Detector

Jun Gao^{a,b}, Shu Li^{a,b,c},Yanwen Liu^b, Emmanuel Monnier^a, Ruiqi Zhang^b

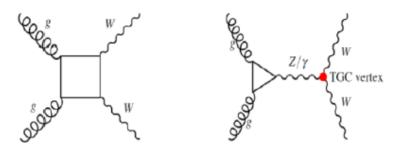
^aCentre de Physique des Particules de Marseille ^bUniversity of Science and Technology of China ^c now at Duke University

7th FCPPL workshop in Clermont-Ferrand in April 2014

OUTLINE


• WW analysis status

1) 7 TeV results
 2) 8 TeV progress


• WWW analysis status

Introduction

qq->WW production

gg->WW contributes additional ~3% of WW event

- Motivation:
 - ✓ Important test of the electroweak sector of the Standard Model
 - ✓ Irreducible background for Higgs searches.
 - ✓ Sensitive to anomalous triple gauge couplings
- Characteristics:

Isolated high pT di-lepton final states are considered: ee, eµ, µµ High Missing transverse Energy

- ✓ Main backgrounds:
 - Z+jets : Missing transverse Energy mismeasurement
 - Top : ttbar and Wt where no jets are detected
 - W+jets : jet fakes lepton

Other dibosons : Wγ , WZ, ZZ

Event Selection for 7 TeV

- General Preselection and Object Definition similar to Electroweak-Common Recommendations. In particular:
 - muon Pt>20GeV, |η|<2.4,
 - Tight++ electron Pt>20GeV , $|\eta|$ <2.47 w/o crack
 - jet, pT>25GeV and |η|<4.5
- Event-Selection

Opposite sign leptons with pT>20(trailing),25(leading)GeV To remove Z+jets contribution

- \blacktriangleright $|M_{II}-M_{Z}|$ >15GeV for ee and $\mu\mu$
- > M_{\parallel} >15GeV for ee and $\mu\mu$, and M_{\parallel} > 10 GeV for e μ
- pT(II) >30GeV for all three channels

Further reduce Drell-Yan and QCD multi-jet contributions.

MET^{Rel} > 45,45 GeV for μμ and ee, 25 GeV for eμ Remove top contribution

> Jet veto: no jets of ET > 25 GeV within $|\eta| < 4.5$

Bjet veto: reject events if at least one b-jet with pT>20GeV

	Channel	Period	Trigger
	μ	D-I	mu18_MG
	μ	J-M	mu18_MG_medium
ſ	e D-J		e20_medium
	е	K	e22_medium
	е	L-M	e22vh_medium1

Result for 7 TeV paper

Measurement of the W+W- Production Cross Section in Proton-Proton Collisions at sqrt(s) =
7 TeV with the ATLAS Detector and Limits on the Anomalous Triple-Gauge-Boson Couplings
Support Note: ATL-COM-PHYS-2012-189 (Sec 4 5 6 7 8 9 11 12, Appendix: A B C)
Paper: Phys. Rev. D 87, 112001 (2013)

Shu Li's PHD these.

WW cross section measurement in dileptonic channel using 4.6 fb⁻¹ data

Data	ее 174	μμ 330	еµ 821	Combined 1325
WW	$100 \pm 2 \pm 9$	$186 \pm 2 \pm 15$	$538 \pm 3 \pm 45$	$824\pm4\pm69$
Тор	$22 \pm 12 \pm 3$	$32 \pm 14 \pm 5$	$87 \pm 23 \pm 13$	$141 \pm 30 \pm 22$
W + jets	$21 \pm 1 \pm 11$	$7 \pm 1 \pm 3$	$70 \pm 2 \pm 31$	$98 \pm 2 \pm 43$
Drell-Yan	$12 \pm 3 \pm 3$	$34 \pm 6 \pm 10$	$5 \pm 2 \pm 1$	$51 \pm 7 \pm 12$
Other dibosons	$13 \pm 1 \pm 2$	$21 \pm 1 \pm 2$	$44 \pm 2 \pm 6$	$78 \pm 2 \pm 10$
Total background	$68 \pm 12 \pm 13$	$94 \pm 15 \pm 13$	$206\pm24\pm35$	$369 \pm 31 \pm 53$

The prediction of the SM WW in the table normalized to the theoretical prediction

The total WW production x-section

Measured xsection $51.9 \pm 2.0(stat) \pm 3.9(syst) \pm 2.0(Lumi)pb$ is consistent with the theoretical prediction of 44.7±2.0 pb.

Result for 7 TeV paper

- The reconstructed pT distribution of the leading lepton is used to extract limits on anomalous WWZ and WWγ couplings
- aTGC limits are updated and getting more restrictive than Tevatron results

Scenario	Parameter	Expected ($\Lambda = 6 \text{ TeV}$)	Observed ($\Lambda = 6 \text{ TeV}$)	Expected $(\Lambda = \infty)$	Observed ($\Lambda = \infty$)
LEP	$\begin{array}{c} \Delta \kappa_Z \\ \lambda_Z = \lambda_\gamma \\ \Delta g_1^Z \end{array}$	$\begin{bmatrix} -0.043, 0.040 \end{bmatrix}$ $\begin{bmatrix} -0.060, 0.062 \end{bmatrix}$ $\begin{bmatrix} -0.034, 0.062 \end{bmatrix}$	[-0.045, 0.044] [-0.062, 0.065] [-0.036, 0.066]	$\begin{bmatrix} -0.039, 0.039 \end{bmatrix}$ $\begin{bmatrix} -0.060, 0.056 \end{bmatrix}$ $\begin{bmatrix} -0.038, 0.047 \end{bmatrix}$	$\begin{bmatrix} -0.043, 0.043 \\ [-0.062, 0.059] \\ [-0.039, 0.052] \end{bmatrix}$
HISZ	$\begin{aligned} \Delta \kappa_Z \\ \lambda_Z &= \lambda_\gamma \end{aligned}$	[-0.040, 0.054] [-0.064, 0.062]	[-0.039, 0.057] [-0.066, 0.065]	[-0.037, 0.054] [-0.061, 0.060]	[-0.036, 0.057] [-0.063, 0.063]
Equal couplings	$\Delta \kappa_Z \ \lambda_Z = \lambda_\gamma$	[-0.058, 0.089] [-0.060, 0.062]	[-0.061, 0.093] [-0.062, 0.065]	$\begin{bmatrix} -0.057, 0.080 \end{bmatrix}$ $\begin{bmatrix} -0.060, 0.056 \end{bmatrix}$	[-0.061, 0.083] [-0.062, 0.059]
The measured leading lepton pT distribution is unfolded to provide a differential cross-section measurement in the fiducial phase space and allows a comparison with different theoretical models.				1 (√s=7 TeV) ● [+ s	Anne Carlo (MC@NLO)

Data

25

40

100

120

140

Leading lepton p_ [GeV]

350

60

80

April 8, 2014

8 TeV features

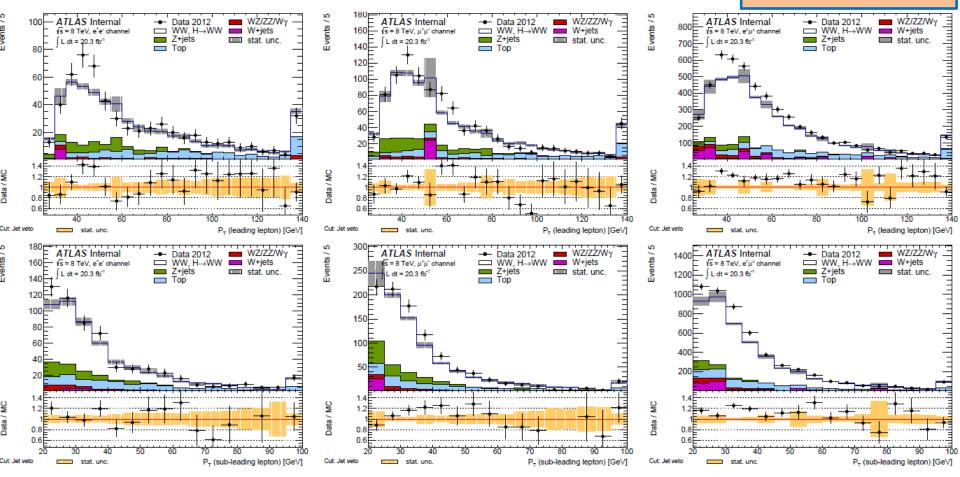
- WW cross section measurement in dileptonic channel using 20.3 fb⁻¹ data (2012 full dataset)
- Selection strategy re-optimized from 2012 analysis Main changes to the Analysis with Respect to the 7 TeV analysis
- 1) The lepton definition has been altered to be more robust against pileup effect
- 2) The pT (II) cut has been removed . A new cut on track MET has been introduced to further suppress DY contribution
- 3) Di-lepton trigger introduced

ee, $\mu\mu$: Dilepton trigger

- eμ: OR of dilepton trigger and single lepton trigger
 - Triggers
 - ee: EF_2el2Tvh_loosel
 - mm: EF_mu18_tight_mu8_EFFS
 - em: EF_e24vhi_medium1, EF_e60_medium1, EF_mu24i_tight, EF_mu36_tight, EF_e12Tvh_medium1_mu8

Dataset cutflow and Signal-background events

Cuts	ee	μμ	еμ	Combined
2 leptons	5973852	10468599	168163	16610614
opposite-sign	5959214	10464315	157773	16581302
$\ell p_{\rm T}$, trigger-match	4891345	8450460	85080	13426885
$M(\ell\ell) > 10/15 {\rm GeV}$	4880968	8427076	85036	13393080
$ M(\ell\ell) - M_Z < 15 \text{GeV}$	409977	728999	_	1224012
$E_{\rm T, Re1}^{\rm miss} > 15/45 {\rm GeV}$	11649	20249	53468	85366
$p_{\rm T}^{\rm miss} > 20/45 {\rm GeV}$	5850	9402	44929	60181
$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < 0.6/0.3$	2646	4390	28292	35328
Jet veto	585	975	5093	6653


Work In Progress

Final State	ee Channel	$\mu\mu$ Channel	eµ Channel	inclusive	
Observed Events	585	975	5093	6653	
Total MC prediction (S+B)	547.49	929.55	4503.91	5980.95	
MC WW signal	354.81	621.23	3300.04	4276.08	
Тор	99.17	128.06	619.20	846.43	
Z+jets	55.80	113.77	160.85	330.41	Work In Drogroce
W+jets	7.74	28.01	266.77	302.52	Work In Progress
Dibosons	29.98	38.48	157.05	225.51	
Total Background	192.68	308.52	1203.87	1704.87	

MC yields are normalized to an integrated luminosity of 20.3 fb-1

WW candidate plots

Work In Progress

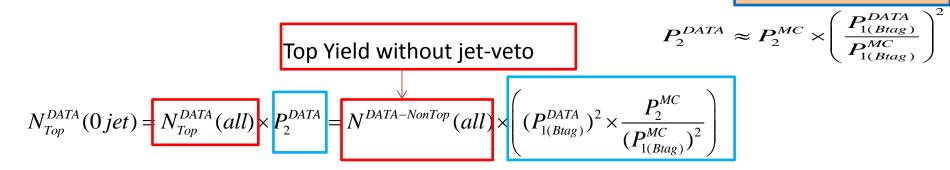
- Leading lepton Pt and trailing lepton Pt distribution for ee(left), $\mu\mu$ (middle), $e\mu$ (right)
- All selection cuts are applied.
- Stacked histograms are from MC predictions for signal and background

Data-driven Wjets Background estimation

- fake factor method:
 - W+jet Control region : tight lepton + loose lepton
 - W+jet contribution := Control region * "fake factor".
- Fake factor definition : f= Numerator /Denominator Numerator : good lepton Denominator : bad lepton estimated using a di-jet sample.
- Systematic sources

trigger bias, Pileup-bias, sample dependence (Wjet vs dijet), real lepton contaminations, etc.

• Final estimate


	ee-ch	eµ-ch	$\mu\mu$ -ch	Total
W+jet background (e-fakes)	$7.54 \pm 0.72 \pm 6.57$	$97.08 \pm 3.10 \pm 64.04$	-	$104.63 \pm 3.18 \pm 70.61$
W+jet background (μ -fakes)	-	$117.38 \pm 6.64 \pm 76.04$	$18.47 \pm 2.77 \pm 11.98$	$135.85.90 \pm 7.19 \pm 88.02$
Total W+jet background	$7.54 \pm 0.72 \pm 6.57$	$214.46 \pm 7.32 \pm 140.08$	$18.47 \pm 2.77 \pm 11.98$	$240.47 \pm 7.86 \pm 158.63$

Work In Progress

Data-driven Top Background estimation

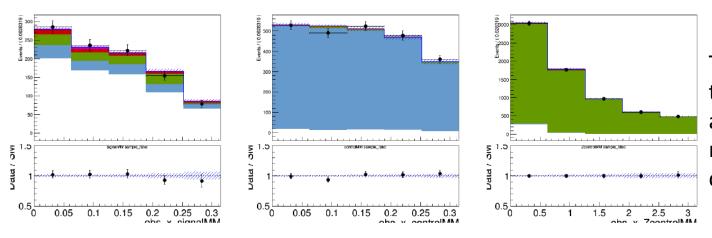
✓ Jet-veto Survival Probability Method

Work In Progress

- Two Control regions:
- 1st CR: b-tagging control sample , purely dominated by ttbar to compare jet-veto efficiency from DATA and from MC
- 2ndCR: full selection without jet-veto to derive jet-veto efficiency in MC
- > Agree with MC prediction
- ➤ ~8.3% overall uncertainty.

Including experimental uncertainty and theoretical uncertainty.

	ee	Mm	em
DATA-driven estimation	89.6+/-7.2+/-7.7	126.9+/-9.4+/-10.7	611.1+/-17.8+/-50.9
MC prediction	97.9+/4.9(stat)	128.1 +/-5.8(stat)	623.1+/-12.1(stat)
April 8, 2014			


other background estimation

For Top and DY

Simultaneous Fit

- Extract signal cross-section and background (Top & DY) contribution
- Three regions are fitted:

signal region, top control region and DY control region Adjust the relative contributions of the fitted components

The $\Delta \phi$ distribution in the signal, top control and Drell-Yan control region for the $e\mu$ channel after the fit

For Dibosons (WZ, ZZ, Wγ, Wγ*) The estimation is based on MC

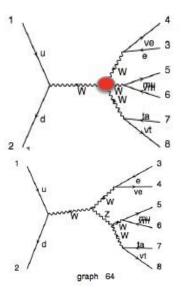
April 8, 2014

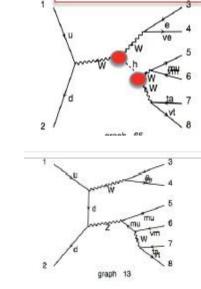
Work In Progress

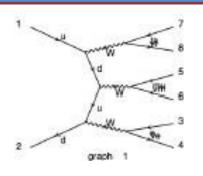
8 TeV WW analysis status

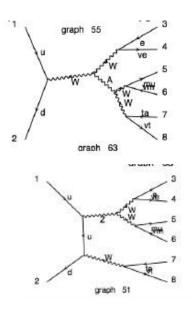
• Time scale

- > Jan 7th, 2014 . The end of optimization of the selection criteria
- Finalize the background study
 Make a cross-section measurement and update supporting note
- Inform EB, have another EB meeting and discuss CONF note prob.


Where we are


- Finish unfolding and aTGCs limit setting
- Inform EB and have the completed supporting note reviewed




WWW analysis

- Motivation :
 - 4-W vertex never directly measured before.
 - Sensitive to HWW coupling .
- Signal & Background:
 - Processes with 3W(lv) in final state .
 - WW,WZ,ZZ,ttbar,Z+jets,W+jets

- Analysis status
 - Starting the analysis recently.
 - Skimming samples and singal MC ready
 - April 8, 2014 Discussion with WH group

To be the PHD thesis of Ruiqi Zhang14

Summary

• WW cross section measurement in dileptonic channel .

- We already have nice results for 7 TeV 4.6 fb⁻¹ data . Now 8 TeV analysis using 20.3 fb⁻¹ data is ongoing.
- Data-driven methods used for almost all the backgrounds (Drell-Yan, top and W+jets).
- WWW analysis is starting.
- THANKS A LOT to all of you!

backup

Object selection for 8 TEV

Muon: Combined, IDhits

|η|<2.4 , pt>7 GeV Z0*sin(θ) <1 mm sig (d0)<3 Calo Isolation 7<pt≤15GeV, Etcone30/Pt<0.06 15<pt≤20GeV, Etcone30/Pt<0.12 20<pt≤25GeV, Etcone30/Pt<0.18 pt>25GeV, Etcone30/Pt<0.30 Track Isolation 7<pt≤15GeV, Ptcone40/Pt<0.06 15<pt≤20GeV, Ptcone30/Pt<0.08 pt>20GeV, Ptcone30/Pt<0.12 overlap removal with jet Electron: author , good OQ , pt>7 GeV $|\eta| < 2.4$ exclude crack region VeryTight likelihood eID Z0*sin(θ) <0.4 mm sig (d0)<3 Calo Isolation 7<pt≤15GeV,TopoEtcone30/Pt<0.20 15<pt≤20GeV, TopoEtcone30/Pt<0.24 pt>20GeV, TopoEtcone30/Pt<0.28 Track Isolation 7<pt≤15GeV, Ptcone40/Pt<0.06 15<pt≤20GeV, Ptcone30/Pt<0.08 pt>20GeV, Ptcone30/Pt<0.10

overlap removal with jet

Jet : ANtiKt4TopoLCjets

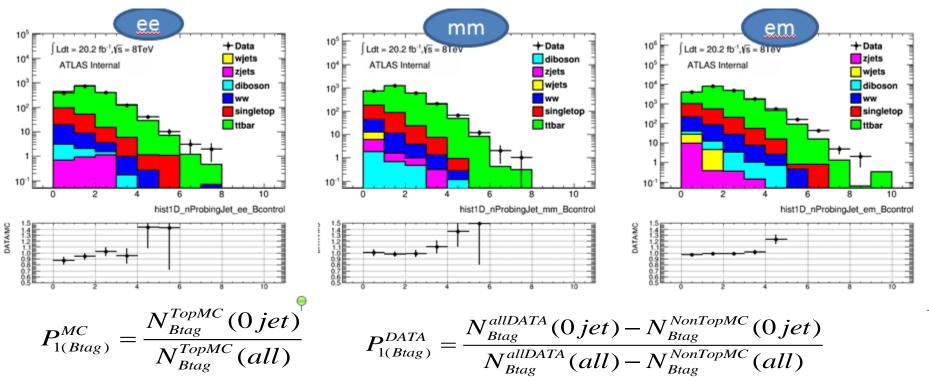
|η|<4.5, pt>25 GeV, JVF >0.5 for jets |η|<2.4, pt<50 GeV
!Ugly !LooserBad
overlap removal with electron</pre>

Impact parameter & Isolation for leptons : Basically Follow HSG3 definition

Event selection for 8 TeV

Trigger: ee, $\mu\mu$: Dilepton trigger

eμ:: OR of dilepton trigger and single lepton trigger


ee+mm	em	
Leading lepto	n p _T > 25 GeV	
Sub-leading lepton $p_T > 20 \text{ GeV}$		
M(l,l) > 15 GeV	M(l,l) > 10 GeV	
Z Veto: M(l,l) – M _Z > 15 GeV	-	
E _{T,rel} ^{miss} (RefFinal) > 45 GeV	E _{T,rel} ^{miss} (RefFinal) > 15 GeV	
Jet Veto	Jet Veto	
$p_T^{miss} > 45 \text{ GeV}$	$p_T^{miss} > 20 \text{ GeV}$	
$ \Delta \phi(E_T^{miss}, p_T^{miss}) < 0.3$	$ \Delta \phi(\mathbf{E}_{T}^{\text{miss}}, \mathbf{p}_{T}^{\text{miss}}) < 0.6$	

Top Background Study: JVSP method (Jet Veto Survival Probability)

1st control region : Btagging

- All Event selection without jet-veto cut are applied
- For all selected jets : at least one b-jet (tag-jet)
- For probe jets, derive jet veto efficiency (P₁) $P_{1(Btag)} = \frac{N_{Btag}(0ProbJet)}{N_{Btag}(all)}$
- The non-top contribution is small

nJet(Probe)

2nd control region

- All Event selection without jet-veto cut are applied CR1(btagging) is a high-purity subset of CR2
- For good jets, get jet-veto efficiency (P₂) for MC
- $P_2^{MC} = \frac{N_{Top}^{MC}(0\,jet)}{N_{Top}^{MC}(all)}$

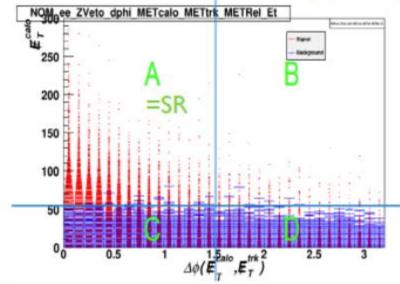
• True jet veto efficiency for data

$$P_2^{DATA} \approx P_2^{MC} \times \left(\frac{P_{1(Btag)}^{DATA}}{P_{1(Btag)}^{MC}}\right)^2$$

This CR also dominated by top, with 20% WW contribution

summary for the main systematic sources

	Source	Result (overall)	HSG result for comparison
1	JES	3.1% (bjet) 2.0%(base) 1.5% (NP modeling)	3.0% (bjet) 1.6%(base) 1.5%(NP modeling)
2	JER	1.8%	<1%
3	B-tagging(bjet)	3.5%	2.9%
4	Non-top bkg substruction	2.1%	2.7%
5	Single-top Xsec variation	1.8%	<1%
6	MC generator/paton shower+had	6.3%	3.4 %
7	Single top- ttbar interference	1.1%	0.8%
8	Theory(scale unc.)	1.9%	1.5%
10	PDF (perform pdf reweighting to get the relative variation)	1.7%	1.3%
11	Exponent /Yield Scale	<1% / ~1%	Not considered
	Total uncertainty	8.3% (all combined)	7.6%

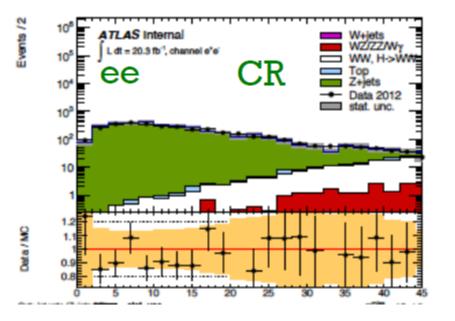

+ DY – ABCD

- \blacksquare Define ABCD regions using METrel and $\Delta \ \phi$
 - Remove ptmiss to gain statistics. Later use the efficiency of this cut to extrapolate to SR

$$Z^{A} = (Data^{C} - MC^{C}_{Non-Z}) \cdot \frac{(Data^{B} - MC^{B}_{Non-Z})}{(Data^{D} - MC^{D}_{Non-Z})} \cdot SF$$

SF obtained from MC as A/B = SF * C/D

- Systematic evaluation on ptmiss efficiency
 - Main systematic: JER, Etmiss


	DD estimation
ee	59.2 ± 3.9 ± 23.4
mm	$118.1 \pm 5.6 \pm 37.5$
em	$166 \pm 11 \pm 28$

+ DY – Transfer Factor

- SF: invert METtrk, no $\Delta \phi$
- OF: invert $\Delta \phi$, no METtrk
- Obtain bkg yield in SR using

Data-Driven Z + jets = TF
$$\cdot \left(N_{CR}^{\text{data}} - N_{non-Z,CR}^{\text{MC}} \right)$$
 TF = $\frac{N_{Z,SR}^{\text{MC}}}{N_{Z,CR}^{\text{MC}}}$

	DD estimation		
ee	ee 58.5 ± 7.0 ± 30.9		
mm	$121.6 \pm 10.2 \pm 52.3$		
em	$161.5 \pm 16.6 \pm 26.6$		

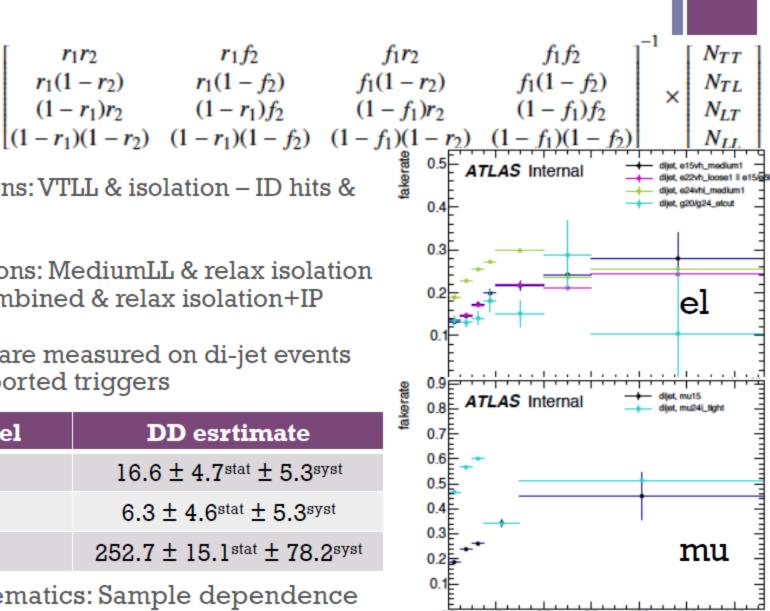
 Main systematics: JER, METrel, ptmiss

W+jets – Matrix Method

 $r_1 f_2$

Tight leptons: VTLL & isolation – ID hits & isolation

 r_1r_2


N_{RR}

W+jets

- Loose leptons: MediumLL & relax isolation +IP - isCombined & relax isolation+IP
- Fake rates are measured on di-jet events using supported triggers

Channel	DD esrtimate
ee	$16.6 \pm 4.7^{\text{stat}} \pm 5.3^{\text{syst}}$
mm	$6.3 \pm 4.6^{\text{stat}} \pm 5.3^{\text{syst}}$
em	$252.7 \pm 15.1^{stat} \pm 78.2^{syst}$

Main systematics: Sample dependence

fakerate

+ Dibosons

• Estimation of WZ, ZZ, W γ and W γ * is based on MC

Wg k-factor = 1.37 (from 2011 ATLAS W γ measurement)

Final State	$e^+e^-E_{\rm T}^{\rm miss}$	$\mu^+\mu^- E_{\rm T}^{\rm miss}$	$e^{\pm}\mu^{\mp}E_{T}^{miss}$	Combined
Diboson Background				
WZ	7.96±0.72	19.57 ± 1.02	66.05±1.78	93.58±2.17
ZZ	10.76±0.43	16.19 ± 0.54	3.55±0.19	30.50 ± 0.72
Wγ	5.91±1.02	0.00 ± 0.00	44.82 ± 2.81	50.72±2.99
Wy*	5.41±0.84	2.74±0.58	43.09±2.31	51.24±2.53
Total Background	30.03±1.57	38.51±1.29	157.51±4.06	226.05±4.53

6

+ Yield & Background Summary

		ee	mm	em
Data		589	975	5067
WW (signal - MC)		355	621	3300
Dibosons		30.03 ± 1.57^{stat}	38.51 ± 1.29^{stat}	157.51 ± 4.06^{stat}
Wjets	MC	7.7	28	267
	MM	$16.6 \pm 4.7 \pm 5.3$	$6.3 \pm 4.6 \pm 5.3$	$252.7 \pm 15.1 \pm 78.2$
	FFM	$7.54 \pm 0.72 \pm 6.57$	$18.5 \pm 2.8 \pm 12.0$	$214.5 \pm 7.3 \pm 140.1$
Тор	MC	97	129	624
	TF	97.3 ± 5.1 ± 22.8	$131.2 \pm 6.4 \pm 38.6$	$641.4 \pm 13.6 \pm 145.9$
	JVSP	$89.6 \pm 7.2 \pm 7.7$	$126.9 \pm 9.4 \pm 10.7$	$611 \pm 17.8 \pm 50.9$
	SimFit	92 ± 24	132± 25	662 ± 103
DY	MC	55	114	158
	TF	$58.5 \pm 7.0 \pm 30.9$	$121.6 \pm 10.2 \pm 52.3$	$161.5 \pm 16.6 \pm 26.6$
	ABCD	59.2 ± 3.9 ± 23.4	118.1 ± 5.6 ± 37.5	$166 \pm 11 \pm 28$
	SimFit	54 ± 18	97 ± 19	146 ± 25