

Photon performance and search for the Higgs boson in H \rightarrow Z γ \rightarrow Il γ decay mode

Giovanni Marchiori, <u>Kun Liu</u>, Yanwen Liu

08/04/2014 7th FCPPL workshop @ Clermont-Ferrand

Introduction

- Photon trigger efficiency measurement
- Photon identification efficiency measurement
- Latest results on the Higgs coupling measurement in H $\rightarrow \gamma\gamma$ channel
- Search for the Higgs boson in $H \rightarrow Z\gamma \rightarrow II\gamma$ decay mode

Photon trigger performance

- For the high pile up condition in 2012 data, we proposed the medium photon trigger: optimize the criteria used in previous trigger, study new variables which are robust against pile up.
- Trigger efficiency is measured using photons from radiative Z decays.
- The results are used in the H $\rightarrow \gamma \gamma$ analysis. In parallel, the measurement is included in the trigger performance paper (in preparation).

Photon identification (ID) efficiency measurement

- Photon off-line identification efficiency is measured with three data-driven methods. It's uncertainty is reduced by combination of the three methods.
 We contributed two of them:
 - radiative Z decays: using pure photons selected from radiative Z decays
 - matrix method: measuring photon purity of two samples: passing ID and inclusive sample.
- The results are being finalized and being used in the H $\rightarrow \gamma\gamma$ analysis. In parallel, a photon performance paper is preparing based on the photon identification efficiency measurements.

Coupling measurement in H $\rightarrow \gamma\gamma$ channel (Moriond-2013)

• Using m_H = 126.8 GeV and using only 2012 data set

- Inclusive signal strength (μ) : $1.65 \pm 0.24(stat)^{+0.25}_{-0.18}(syst)$ 2.3 σ deviation from the Standard Model.
- μ in each category :

Signal strength

Search for the Higgs Boson in H \rightarrow Z $\gamma \rightarrow$ II γ mode

Overview

• In the Standard Model, $H \rightarrow Z\gamma$ is rare decay, and proceeds mainly through loops

- Why the H \rightarrow Z γ channel is interesting ?
 - -- decay rate can help determine whether the new boson is the SM Higgs boson
 - -- measurement of $\Gamma_{Z\gamma}$ provides information on the underlying dynamics of the Higgs sector
 - -- sensitive to potential heavier new particles in the loops

The first preliminary analysis was published in 2013

- Study was done using full run I data set. Events are classified in four categories based on lepton flavor (μ or e) at $\sqrt{s} = 7$ TeV or 8 TeV.
- Using $\Delta m(M_{||\gamma} M_{||})$ as discriminating variable, the exclusion limit was set on Higgs mass in the range [120, 150] GeV.
 - $_{\odot}$ expected limits vary between 7.3 and 22.1 xSM
 - $_{\odot}$ observed limits vary between 5.4 and 36.9 xSM

 Our goal after this conference note was to improve the analysis as much as possible and publish as soon as possible.

The optimized analysis was published as paper in 2014

• The events are classified in 10 categories, in order to enhance the analysis sensitivity, based on the kinematic variables: $p_{T}^{z} = p_{T}^{p_{T}} = p_{T}^{p_{T}}$

Parametrization(bkg extracted in data fit)

• Expected signal and background yields in [-5, +5] GeV mass window at 125 GeV

	Category		N_S	N_B	N_D	$\frac{N_S}{\sqrt{N_B}}$	FWHM
\sqrt{s}	ℓ					, b	
[TeV]							[GeV]
8	μ	high p _{Tt}	2.3	310	324	0.13	3.8
8	μ	low $p_{\rm Tt}$, low $\Delta \eta$	3.7	1600	1587	0.09	3.8
8	μ	low p_{Tt} , high $\Delta \eta$	0.8	600	602	0.03	4.1
8	е	high p_{Tt}	1.9	260	270	0.12	3.9
8	е	low $p_{\rm Tt}$, low $\Delta \eta$	2.9	1300	1304	0.08	4.2
8	е	low p_{Tt} , high $\Delta \eta$	0.6	430	421	0.03	4.5
7	μ	high p_{Tt}	0.4	40	40	0.06	3.9
7	μ	low p_{Tt}	0.6	340	335	0.03	3.9
7	e	high p _{Tt}	0.3	25	21	0.06	3.9
7	е	low p_{Tt}	0.5	240	234	0.03	4.0

• High pTt categories have better S/B and signal resolution than low pTt ones.

Background only fit on data

 Summing of background shape(fitted on data in each category) and signal shape in all categories are illustrated with inclusive data distribution.

Signal yields and parameters interpolation

Expected signal yields:

$$N_{i,\ell}(m_H) = \int \mathscr{L}dt \times \sigma_i(m_H) \times \mathscr{B}_{H \to Z\gamma}(m_H) \times \mathscr{B}_{Z \to \ell\ell} \times \varepsilon_{i,\ell}(m_H)$$

Higgs BF and cross section is taken from theory, while the efficiency is evaluated in signal MC plus parabolic interpolation with 0.5 GeV mass step.

Signal model: Crystal ball + Gaussian

Systematic uncertainty

Experimental uncertainties on

- signal yields: are dominated by the uncertainties of luminosity (~3%), photon identification and electron reconstruction & identification (~3%). The total relative uncertainty on the signal efficiency in each category is within 5%.
- single peak position (0.2 GeV) is dominated by photon energy scale; width of signal mass is dominated by the photon and electron energy resolution (~3-10%) and muon resolution (1.5 %)

• **Theoretical uncertainties** on the production cross section: the choice of renormalization and factorization scales in the fixed-order calculations, the uncertainties on the PDFs and the value of α . It is more than two times larger the corresponding experimental uncertainty. The relative uncertainty on the H \rightarrow Z γ branching ratio varies between 9% for m_H = 120 GeV and 6% for m_H = 150 GeV. An additional 5% uncertainty accounts the effect of the interference H \rightarrow II γ decay amplitudes (H $\rightarrow \gamma\gamma^* \rightarrow$ II γ , H \rightarrow II $^* \rightarrow$ II γ).

• The Bias from background modeling: the expected bias varies between 0.5 events in poorly populated categories and 8.3 events in highly populated ones.

95% C. L. limit

 The 95% C.L. limit is set on the production cross section times branching ratio (left), and on which is with normalized to the SM expected one (right).

Summary

- We were working on the photon performance measurements: photon trigger criteria optimization and ID efficiency measurements.
 Two performance papers are preparing.
- We leaded the research of the Higgs boson in H \rightarrow Z γ mode. The paper has been published in PLB. No excess with respect to the background is found in the II γ invariant-mass distribution. For a mass of 125.5 GeV, the observed 95% C.L. Limit is 11 times the SM prediction.