Study of the Higgs boson in the WW channel

FCPPL team(2013)LALNanjing U. / USTCZ. ZhangS. ChenS. BinetY. ZhuY. Li (Joint PhD)

2014-4-8

FCPPL2014

Outline

- Rate analysis in HWW:
 - top background study in 0jet channel
- Spin analysis in HWW
 - MVA optimization in 1jet channel
 - top background study 1jet channel
- Muon fake rates study
 - Fake muon suppression using BDT

Rate Analysis in HWW Channel

♦ HWW channel: Higgs \rightarrow WW^(*) \rightarrow lvlv

- HWW channel is divided into 3 sub-channels according to the jet multiplicity in the final states (right plot):
 - 0jet, 1jet and VBF channels
- Rate analysis is to measure H production rate and test if it agrees with SM prediction by a likelihood fit
- Main backgrounds: di-boson, top, Z+jets and
 W+jets

Top Background in Ojet Channel of Rate Analysis

Top process is one of the main backgrounds in 0jet channel

Process	Signal(MC)	Di-boson(MC)	Top(MC)	Z+jets(MC)	W+jets&QCD(data-driven)	data
0jet channel	303	7961	1216	6627	1682	14340

It is important to normalize its MC prediction with data-driven method

 In principle, there are always 2 bjets in top final states. But we only count jet whose pT is above 25 GeV, if both bjets are below this threshold, top event fall into 0jet channel.

It includes several sub-processes:

- ttbar and Wtop(main)
- Single top of s/t channel
- There are several data-driven methods to determine the normalization of top quark background:
 - Jet Veto Survival Probability(JVSP) method(baseline)
 - Template method and its simplified version
 - In-situ b-tagging efficiency based method(IBEB)
- These methods, together with their performance in HWW+0jet analysis will be discussed and compared in the following

JVSP Method

- Based on the simple formula below:
 - $N_{0jet} = N_{all} \times P_{0jet}$

- (1)
- N_{all} is the number of top events with all possible jet multiplicity
- **P**_{0jet} is the probability of top events having 0 jet
- Principle: using data to estimate quantities at the right side of formula (1)
- For N_{all}, we replace it with the prediction from (data NonTop MC)
 - $N_{all} \rightarrow N_{all}^{\text{estimated}} = N_{all}^{data} N_{all}^{NonTop,MC}$
- For P_{0jet} , we do a data-driven correction on MC predicted P_{0jet}^{MC}
- Finally, we get the data-driven version of formula (1) :
 - $N_{0jet}^{estimated} = N_{all}^{estimated} \times P_{0jet}^{estimated}$

Template Method

- The goal is to get a data-driven template of the jet multiplicity distribution of top bkg in the signal region \rightarrow its contribution in each sub-channel can be predicted just by counting events in the corresponding bin.
- First, a data-driven top jet multiplicity distribution is extracted in top CR by using data – NonTop MC (plot below)
 - $T_{top,estimated}^{CR} = T_{data}^{CR} f \times T_{Nontop}^{CR}$
 - f is the normalization of non-top MC
- Then extrapolate this template from CR to SR by top MC predicted extrapolation factors:
 - $T_{top,estimated}^{SR} = \frac{T_{top,MC}^{SR}}{T_{top,MC}^{CR}} \times T_{top,estimated}^{CR}$
- The nomalization factor "f" is determined by a likelihood fit in SR using the above template.
- Finally, data-driven prediction of top events in 0jet channel is the 0jet bin of the template:

 $N_{top,0jet}^{estimated} = T_{top,estimated}^{SR}$ (0jet)

Simplified Template Method

- Instead of extracting template from top CR and doing a fit, we draw normalization factor for 0jet bin directly from a smaller top CR:
 - Defined inside 0jet sub-channel by doing a 20~25GeV btagging.
 - ▹ For 0jet channel, there is no jet with >25GeV, but 20~25GeV is possible.

Process	Signal(MC)	Di-boson(MC)	Top(MC)	Z+jets(MC)	W+jets&QCD(data-driven)	data
0jet & btagged	3	109	297	127	53	687

♦ We use the ratio N = $\frac{N_{data-nontop,MC}^{CR}}{N_{top,MC}^{CR}}$ to normalize MC predicted top events in 0jet bin $N_{top,0jet}^{MC} \rightarrow N_{top,0jet}^{estimated} = N_{top,SR}^{MC} \times N$

IBEB Method

- Based on the formula below:
 - $N_{top,0jet} = \frac{N_{top,tagged}}{\epsilon_{top,tag}}$
 - N_{top,tagged} is the number of top events in 0jet channel being tagged to have bjet

(2)

- $\epsilon_{top,tag}$ is the top tag efficiency
- Same principle as JVSP method
- For *N_{top,tagged}*, we estimated it using (data NonTop MC)
 - $N_{top,tagged} \rightarrow N_{top,tagged}^{estimated} = N_{top,tagged}^{data} N_{top,tagged}^{NonTop,MC}$
- For $\epsilon_{top,tag}$, we do a data-driven correction on MC predicted $\epsilon_{top,tag}^{MC}$
 - $\epsilon_{\text{top,tag}}^{\text{MC}} \rightarrow \epsilon_{\text{top,tag}}^{estimated} = \epsilon_{\text{top,tag}}^{\text{MC}} \times \frac{\epsilon_{\text{top,tag,CR}}^{data}}{\epsilon_{\text{top,tag,CR}}^{\text{MC}}}, \quad \frac{\epsilon_{\text{top,tag,CR}}^{data}}{\epsilon_{\text{top,tag,CR}}^{\text{MC}}} \text{ is a correction factor derived in top CR}$
- Finally, we get the data-driven version of formula (2) :

Comparison between Each Method

Here are the results of each method and their corresponding sys errs

Mothod	JVSP	Template	Template(Simp)	IBEB	
Stat	1.8%	7.6%	6.5%	6.6%	
Exp.	4.8%	6.5%	6.5%	1.5%	
Theo.	3.0%	3.5%	3.5%	1.8%	
NonTop	2.7%	7.1%	7.1%	7.1%	
Total sys err	6.3%	10.2%	10.2%	7.5%	
Total sys + stat err	6.5%	12.8%	12.1%	10.0%	
NF	1.11 ± 0.07	1.32 ± 0.17	1.38 ± 0.17	1.37 ± 0.14	
Comment	Most precision Limited by exp err	Except for theo. err All others are large	Except for theo. err All others are large	Least affected by exp. and theo. err	

There results are preliminary(approximations are used)

JVSP is the best (so it's our baseline method)

Spin Analysis in HWW Channel

Two spin models are considered: spin0, spin2

- Method to test which model is preferable:
 - Different H spin -> different topo structure of final state(angles between objects)
 - Use quantities describing this structure to train BDT: 2 BDTs are trained, one from spin0 vs All bkg, the other from spin2 vs All bkg.
 - Construct a 2-D BDT and fit it to data.
- An example fit shown at right plot.
- Different training variables are used in 0jet and 1jet channels
- Only 0jet channel was used previously

BDT optimization in 1jet Channel of Spin Analysis

 To include 1jet bin as well, need optimization
 Tried various combination of input variables and get several sets having similar performance(right plot) → choose the simplest one, which are shown below:

Top Background in 1jet Channel of Spin Analysis

- Top is one of the main bkg in 1jet channel(right upper plot)
- We need to constrain top bkg's shape in SR
 This can be done by extrapolating the shape from CR to SR
 The CR is defined by having non-zero bjet(right bottom plot)
- Then we need to evaluate sys errs for the extrapolation factor α = N_SR/N_CR in each bin. (graphics below)

Theoretical Uncertainties of Top Shape Extrapolation

- Theoretical uncertainties for the extrapolation are studied using the same group of samples in top 0jet case(privately produced, large stat ~ 10000 fb⁻¹)
- Take the QCD scale uncertainty as an example here
- Large stat sample \rightarrow stat uncertainty $\sim 1\%$
- Stat distribute around diagonal → errs on boarder bins can't be estimated precisely → but they contributes little to the fit

Other activities: Fake Muon Study

- This work could contribute to HWW analysis indirectly: since an qualityimproved muon collections will reduce some main background, such as Wjets. Of course other analysis will also benefit(Bs to mumu rare decay search)
- The motivation is the existing working point for 3rd chain muon(the future muon collection that will be used) is not tight enough(too many fake muon), so we tried to train a BDT to suppress the fakes

14

Expected Performance of the BDT

- Output BDT shapes and its ROC are shown in right plots.
- Choose the cut on BDT at which we'll have around the same true muon efficiency as the existing working point
- Comparison with the existing wokring point in terms of true muon efficiency / fake muon reduction

Effi/Redu.(%)	Muon	Pion	Kaon	Proton	Others	unknown
Medium+	97.87	-37.22	-37.02	-60.07	-55.74	-28.35
BDT	97.83	-59.60	-57.25	-80.78	-82.64	-37.12
Improvement	-0.04	60.12	54.66	34.49	48.25	30.92

- When having same true muon efficiency, BDT has almost 2 times stronger fake reduction than medium+ does
- Next step → validation of input variable shapes using data in Z->mumu control region
 - Some discrepancies are observed \rightarrow to be understood and fixed.

Summary

- In HWW+0jet rate analysis, we normalized the top bkg using datadriven method(JVSP) and compared other optional methods with it:
 - JVSP method is the best.
- In HWW+1jet spin analysis, we optimized the BDT training and constraint top's shape as well as the theoretical uncertainties on this constraint.
- We have a promising fake muon suppression method which needs further study.
- We will continue the project with an extended term in 2014:
 LAL: Z. Zhang, D. Rousseau
 Nanjing U. / Shandong U. / USTC
 S. Chen, L. Ma, Y. Zhu
 Y. Li (Joint PhD student)