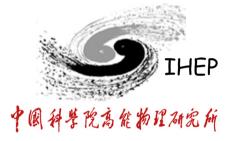
e⁺e⁻, Tau and Hadronic Vacuum Polarization



Project activity report 2013-2014

Michel DAVIER Bogdan MALAESCU ZHANG Zhiqing

[+A. Höcker (CERN)]

YUAN Changzheng

MO Xiaohu WANG Liangliang Wang Ping

Outline

Update of ALEPH spectral functions

 \succ Its applications in precision QCD studies and a_{μ} calculation

□ Summary of e+e- results from Babar $\geq e^+e^- \rightarrow \mu^+\mu^-, \pi^+\pi^-, K+K-$ with ISR method

Recently Published in EPJC

Eur. Phys. J. C (2014) 74:2803 DOI 10.1140/epjc/s10052-014-2803-9 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Update of the ALEPH non-strange spectral functions from hadronic τ decays

M. Davier¹, A. Höcker², B. Malaescu³, C. Z. Yuan⁴, Z. Zhang^{1,a}

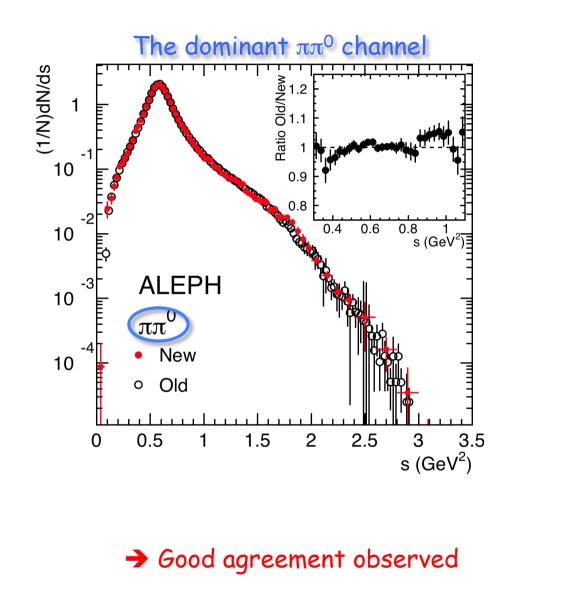
¹ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, 91898 Orsay Cedex, France

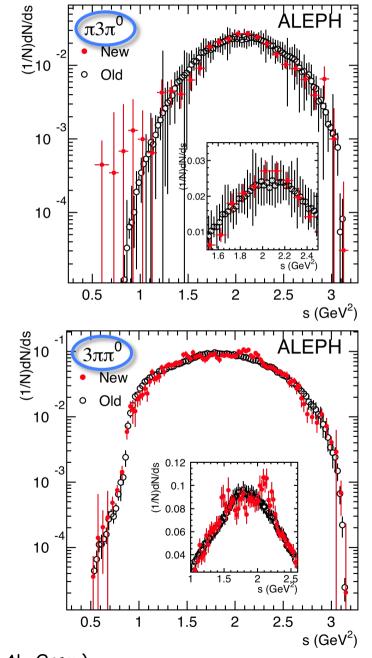
- ² CERN, 1211 Geneva 23, Switzerland
- ³ Laboratoire de Physique Nucléaire et des Hautes Energies, IN2P3-CNRS et Universités Pierre-et-Marie-Curie et Denis-Diderot, 75252 Paris Cedex 05, France
- ⁴ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Received: 4 January 2014 / Accepted: 26 February 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Some of the related earlier publications: > ALEPH Collaboration, Phys. Rep. 421 (2005) 191, hep-ex/0506072 > M. Davier et al., Eur. Phys. J. C 56 (2008) 305, 0803.0979 > M. Davier et al., Eur. Phys. J. C 66 (2010) 127, 0906.5443


The Main Content of the Paper


C Raw data (invariant mass distributions) unchanged 5 channels: $\pi\pi^0$, $\pi2\pi^0$, 3π , $\pi3\pi^0$, $3\pi\pi^0$

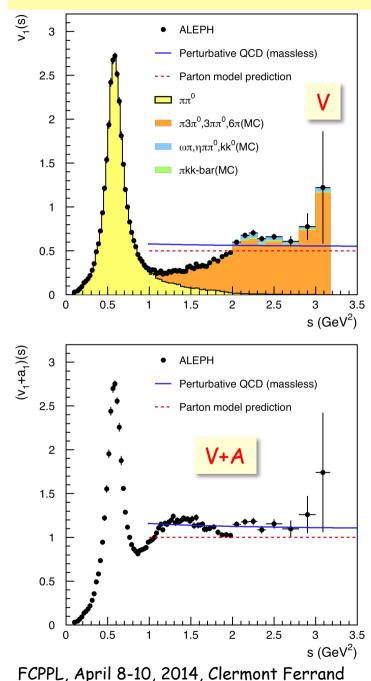
Main improvement New & more robust unfolding method applied Fixing a problem in the statistical covariance matrix

- Calibration and resolution related systematic uncertainties modified Based on specific studies performed
- Update results compared with previous one Find good agreement

Comparison of New and Old Unfolded Spectra

FCPPL, April 8-10, 2014, Clermont Ferrand

Applications of the Tau Hadronic Decay Data


Rich and sometime unique testing ground for the SM

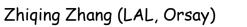
Example applications in this publications:
1) Determination of strong coupling constant α_s Spectral functions (SFs) v, a, v+a are used
2) LO hadronic contribution to muon magnetic anomaly a_μ=(g-2)/2 ππ⁰, 3ππ⁰, π3π⁰ channels are used
3) Line shape fit to ππ⁰ mass spectrum

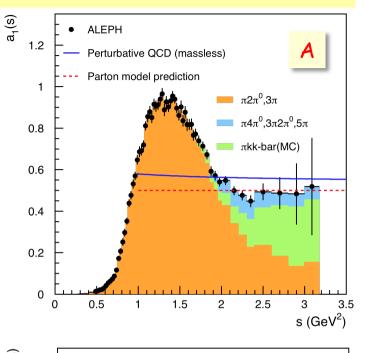
Connection between tau mass spectrum and spectral functions (SFs)

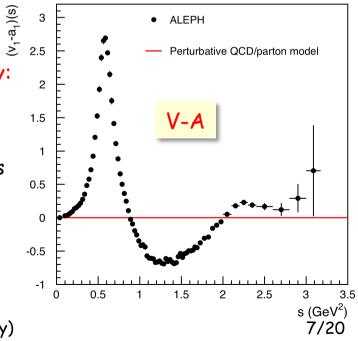
$$v\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}v_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}v_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \rightarrow e^{-}\overline{v_{e}}v_{\tau}\right]} \frac{1}{\mathsf{N}_{\pi\pi^{0}}} \frac{d\mathsf{N}_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1-s/m_{\tau}^{2}\right)^{2}\left(1+s/m_{\tau}^{2}\right)}$$

branching fractions mass spectrum kinematic factor (PS)

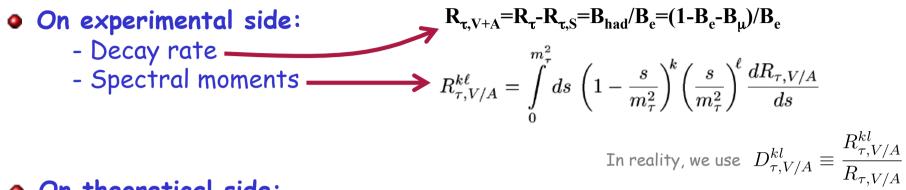
Spectral Functions

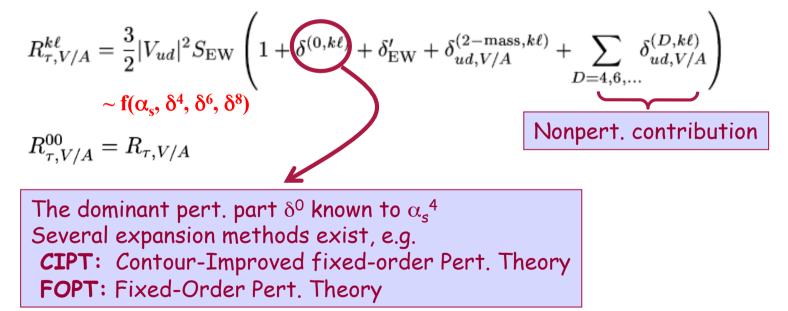

The difference between parton model and pert. QCD predictions is due to expansion in α_s


 $\Rightarrow \alpha_s$ determination


For V & A, data at high masses not yet reach asymptotic limit

V+A: quark-hadron duality:


- large oscillating resonance structure at low mass
- stabilizing to q contribution from pert QCD at high mass



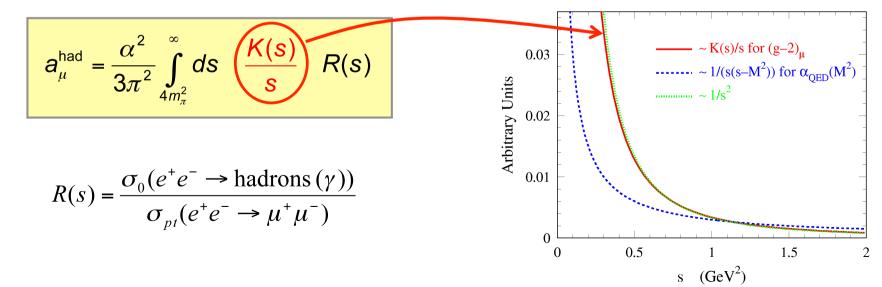
(1) α_s Determination

• On theoretical side:

• A fit thus determines α_s , δ^4 , δ^6 , δ^8 and can check the dominance of δ^0 term

(1) Fit Results with CIPT

$0.346 \pm 0.007 \pm 0.008$ (1.0 ± 1.6) • 10 ⁻⁴	0.335 ± 0.008	8 ± 0.009	$0.341 \pm 0.005 \pm 0.005$	was 0.3
$(1.0 \pm 1.6) \bullet 10^{-4}$				
()	(-6.3 ± 0.1)) • 10 ⁻³	$(-3.1 \pm 0.1) \cdot 10^{-3}$	3
$(2.8 \pm 0.2) \cdot 10^{-2}$	(-3.7 ± 0.2)) • 10 ⁻²	$(-4.6 \pm 1.5) \cdot 10^{-1}$	3
$(-8.2 \pm 0.5) \cdot 10^{-3}$	(10.9 ± 0.5)) • 10 ⁻³	$(1.3 \pm 0.3) \cdot 10^{-3}$	k
$(2.0 \pm 0.3) \cdot 10^{-2}$	(-3.2 ± 0.2)) • 10 ⁻²	$(-6.4 \pm 1.3) \cdot 10^{-1}$	3
f δ^6 , δ^8 & total NP in V+ pert. contribution in V+ V+A expected to be m han V or A. with FOPT, combine CI	A Nore IPT & FOPT	0.4 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	χ_{λ} , χ	nunun • nunun • nununun • nununununununununununununununununununu
$\pm 0.0006_{ m exp} \pm 0.0012_{ m theo}$:	$\pm 0.0005_{\rm evol}$	0.13 $\tilde{\sum}_{3}^{N}$ 0.12 0.11		DIS+jet (HERAPDF1 1.9-173.2] 10 ²
	$(-8.2 \pm 0.5) \cdot 10^{-3}$ $(2.0 \pm 0.3) \cdot 10^{-2}$ eature of approximate of δ^6 , δ^8 & total NP in V+ pert. contribution in V+ a V+A expected to be man V or A. with FOPT, combine CI .332 ± 0.005 _{exp} ± 0.011 o Z mass	$(-8.2 \pm 0.5) \cdot 10^{-3} \qquad (10.9 \pm 0.5)$ $(2.0 \pm 0.3) \cdot 10^{-2} \qquad (-3.2 \pm 0.2)$ eature of approximate f δ^6 , δ^8 & total NP in V+A pert. contribution in V+A pert. contribution in V+A pert. contribution in V+A pert. combine CIPT & FOPT and V or A. with FOPT, combine CIPT & FOPT and S = 0.005_{exp} \pm 0.011_{theo} p Z mass $\pm 0.0006_{exp} \pm 0.0012_{theo} \pm 0.0005_{evol}$	$\begin{array}{c} (-8.2 \pm 0.5) \cdot 10^{-3} \\ (10.9 \pm 0.5) \cdot 10^{-3} \\ (2.0 \pm 0.3) \cdot 10^{-2} \\ (-3.2 \pm 0.2) \cdot $	$\begin{array}{c} (-8.2 \pm 0.5) \cdot 10^{-3} \\ (2.0 \pm 0.3) \cdot 10^{-2} \\ (-3.2 \pm 0.2) \cdot 10^{-2} \\ (-3.2 \pm 0.2) \cdot 10^{-2} \\ (-6.4 \pm 1.3) \cdot 10^{-3} \\ (-6.4 \pm 1.3) \cdot $

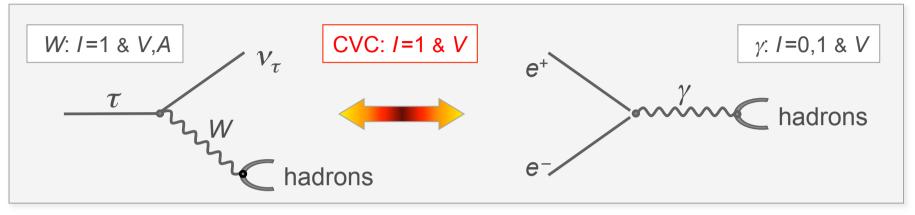

(2) Application to a_{μ}

All numbers shown in 10⁻¹⁰

$$a_{\mu}^{\text{SM}} \equiv \left(\frac{g-2}{2}\right)_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had,LO}} + a_{\mu}^{\text{had,NLO}} + a_{\mu}^{\text{weak}}$$

$$\sigma^{\text{Exp}} = 6.3 \quad \sigma_{\text{QED}}^{\text{SM}} \approx 0.02 \quad \sigma_{\text{had,LO}}^{\text{SM}} \approx 4 \quad \sigma_{\text{had,NLO}}^{\text{SM}} \approx \sigma_{\text{had,LBLS}}^{\text{SM}} \approx 3 \quad \sigma_{\text{weak}}^{\text{SM}} \approx 0.2$$
Dominant error

LO hadronic contribution could not predict from 1st principle but can be rigorously calculated using ee annihilation data via Dispersion Relation



FCPPL, April 8-10, 2014, Clermont Ferrand

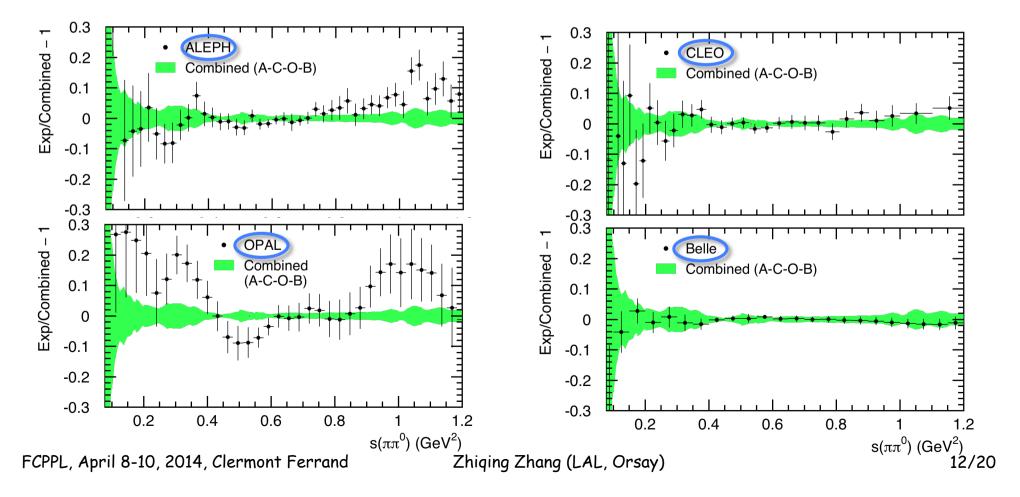
1

(2) Connection Between e+e- and tau

R. Alemany, M. Davier, A. Hoecker, Eur. Phys. J. C 2, 123 (1998)

Hadronic physics factorizes in Spectral Functions :

Isospin symmetry connects I=1 e^+e^- cross section to vector τ spectral functions:


$$\sigma^{(I=1)}\left[e^+e^- \to \pi^+\pi^-\right] = \frac{4\pi\alpha^2}{s}\upsilon\left[\tau^- \to \pi^-\pi^0\upsilon_\tau\right]$$

fundamental ingredient relating long distance (resonances) to short distance description (QCD)

All isospin breaking effects were studied and taken into account in our early paper Eur. Phys. J. C66 (2010) 127, arXiv:0106.5443

(2) The Dominant $\pi\pi^0$ Channel

E	$a_{\mu}^{\rm had, LO}[\pi\pi, \tau] \ (10^{-10})$			
Experiment	$2m_{\pi^\pm}-0.36~{ m GeV}$	$0.36 - 1.8 \mathrm{GeV}$		
ALEPH	was 9.46 $9.80 \pm 0.40 \pm 0.05 \pm 0.07$ was 499.2	$501.2 \pm 4.5 \pm 2.7 \pm 1.9$		
CLEO	$9.65 \pm 0.42 \pm 0.17 \pm 0.07$	$504.5 \pm 5.4 \pm 8.8 \pm 1.9$		
OPAL	$11.31 \pm 0.76 \pm 0.15 \pm 0.07$	$515.6 \pm 9.9 \pm 6.9 \pm 1.9$		
Belle	$9.74 \pm 0.28 \pm 0.15 \pm 0.07$	$503.9 \pm 1.9 \pm 7.8 \pm 1.9$		
Combined	was 9.76 $9.82 \pm 0.13 \pm 0.04 \pm 0.07$ was 505.5	$506.4 \pm 1.9 \pm 2.2 \pm 1.9$		

(2) The tau-based a, Results & Status

Including contributions from 4π channels


$2\pi 2\pi^{0}$:	$14.7 \pm 0.28_{\rm exp} \pm 1.01_{\rm B} \pm 0.40_{\rm IB}$	was 14.89
4π:	$7.07 \pm 0.41_{\rm exp} \pm 0.48_{\rm B} \pm 0.35_{\rm IB}$	was 6.31

one gets total tau-based LO hadronic contributions:

 $537.9 \pm 3.1_{exp+B} \pm 2.0_{IB}$ was 536.4

The difference between tau and e+e- based predictions changed from 1.8 σ to 2.2 σ

Discrepancy between tau/e+ebased predictions and direct measurement remains (version of Photon'13)

(3) Comparison of Line Shape Fit to $\pi\pi^0$

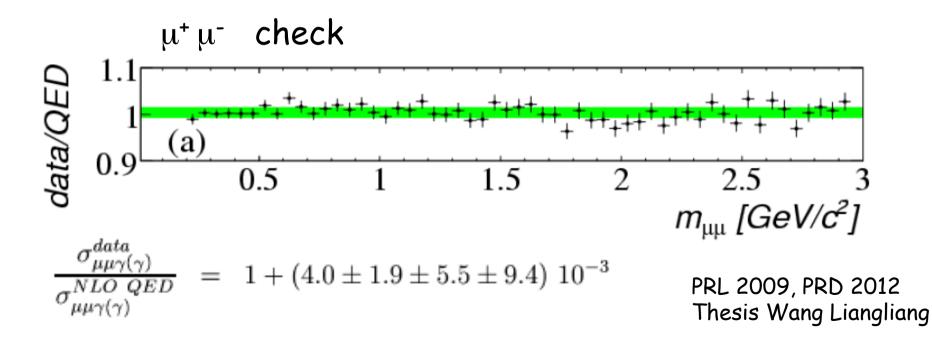
$$\begin{aligned} & \textbf{Use Gounaris-Sakurai parameterization} \quad (\textbf{Phys. Rev. Lett. 21 (1968) 244}) \\ & F_{\pi}^{I=1,0}(s) = \frac{BW_{\rho(770)}(s) \times \left(1 + \alpha \frac{s}{m_{\omega(783)}^2} BW_{\omega(783)}(s)\right) + \beta BW_{\rho(1450)}(s) + \gamma BW_{\rho(1700)}(s)}{1 + \beta + \gamma} \end{aligned}$$

with 7 free parameters

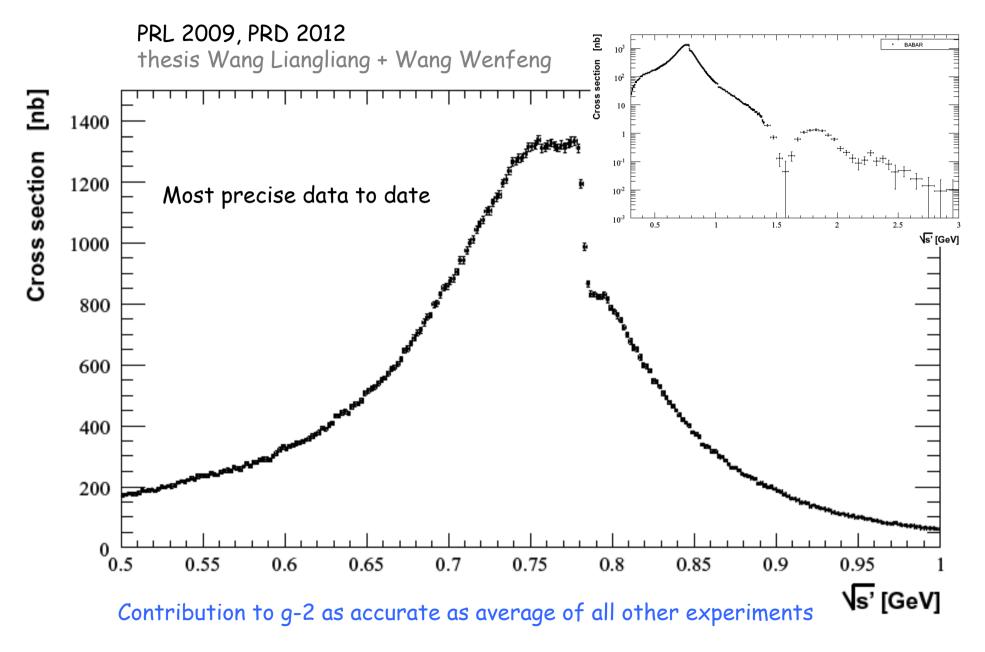
Parameter	ALEPH 2005	This analysis
$m_{\rho \pm (770)}$ (MeV)	775.5 ± 0.7	775.5 ± 1.1
$\Gamma_{\rho^{\pm}(770)}$ (MeV)	149.0 ± 1.2	151.4 ± 1.9
β	0.120 ± 0.008	0.120 ± 0.016
ϕ_{β} (degrees)	153 ± 7	177 ± 17
$m_{\rho \pm (1450)}$ (MeV)	1328 ± 15	1404 ± 29
$\Gamma_{ ho(1450)}(\text{MeV})$	468 ± 41	474 ± 84
γ	0.023 ± 0.008	0.012 ± 0.022
$m_{\rho \pm (1700)}$ (MeV) [fixed]	1713	1713
$\Gamma_{\rho(1700)}$ (MeV) [fixed]	235	235
χ^2/DF	119/110	50.4/69

→ Good agreement between new and old fit results observed The difference is mainly due to the new calibration & resolution

Update of ALEPH spectral functions

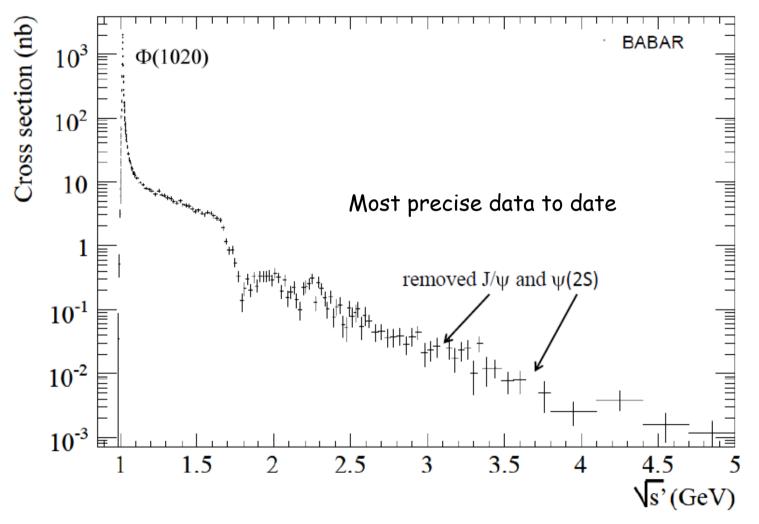

 \succ Its applications in precision QCD studies and a_{μ} calculation

□ Summary of e+e- results from Babar $\geq e^+e^- \rightarrow \mu^+\mu^-, \pi^+\pi^-, K+K-$ with ISR method


Babar: $e^+e^- \rightarrow \mu^+\mu^-$, $\pi^+\pi^-$, K^+K^- with ISR Method

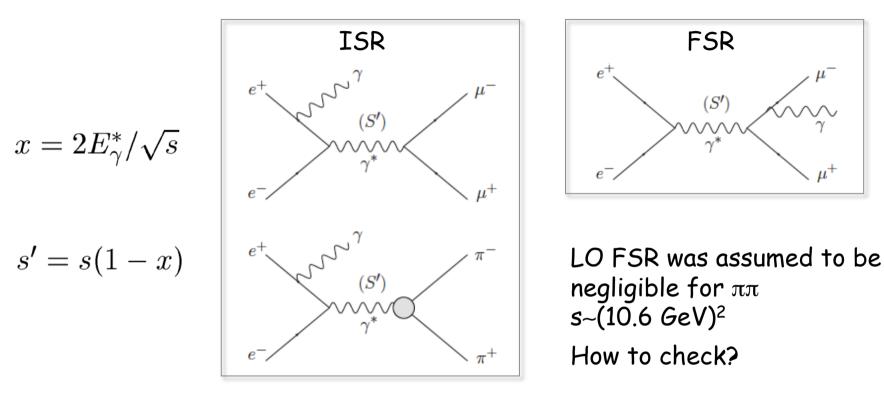
M. Davier, B. Malaescu, Wang Wenfeng (LAL), Wang Liangliang (IHEP)

e⁺ e⁻ $\rightarrow \mu^+ \mu^- \gamma_{ISR}$, $\pi^+ \pi^- \gamma_{ISR}$, K⁺ K⁻ γ_{ISR} measured simultaneously Extensive program of precision measurements to improve the accuracy of hadronic vacuum polarization contribution to g-2 and $\alpha(M_Z)$ Papers published 2009-2013



Babar: $e^+e^- \rightarrow \pi^+\pi^-$

Babar: e⁺e⁻ → K⁺K⁻


PRD 2013, Thesis B. Malaescu + Wang Liangliang

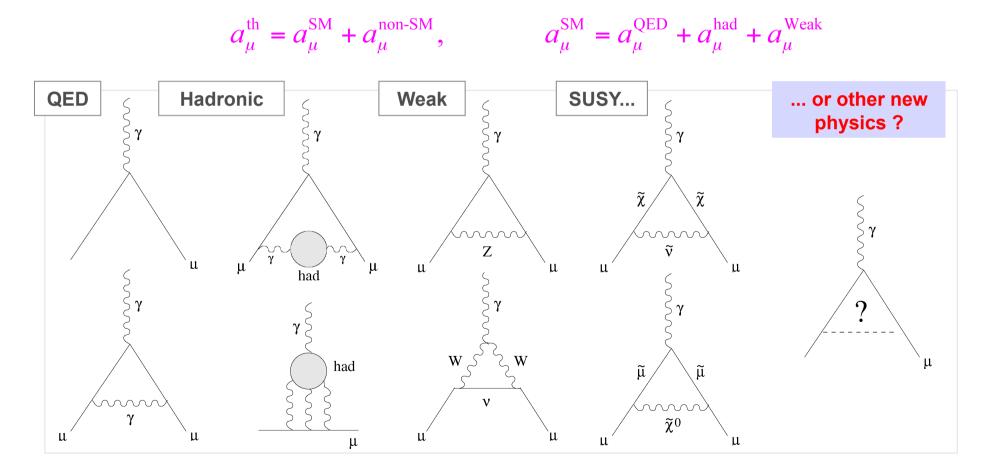
Contribution to g-2 more accurate than average of all other experiments

Babar: ISR-FSR Interference

M. Davier, Wang Liangliang 2014

Charge conjugation C_{XX} =-1 for ISR, +1 for FSR \rightarrow ISR-FSR interference changes sign when X⁺ and X⁻ are interchanged \rightarrow measure the charge asymmetry

First determination, analysis completed, under review in BABAR


- Update of ALEPH spectral functions recently published in EPJC

- \rightarrow Use a new unfolding method and fixed 2 minor technical problems
- \rightarrow Main results are in good agreement with the previous one
- Active collaboration on Babar data analyses/publications continues
- Perspective for $a_{\!\!\!\mu}$ is good
 - \rightarrow New e+e- measurements expected from KLOE2, VEPP-2000)
 - \rightarrow New recent calculation had, NNLO (1.24±0.01)•10⁻¹⁰ (1403.6400)
 - → Expect a factor of 4 error reduction in direct measurements from Fermilab & J-PARC
 - \rightarrow We will continue to be the leading actor on the subject

Muon Magnetic Moment Anomaly

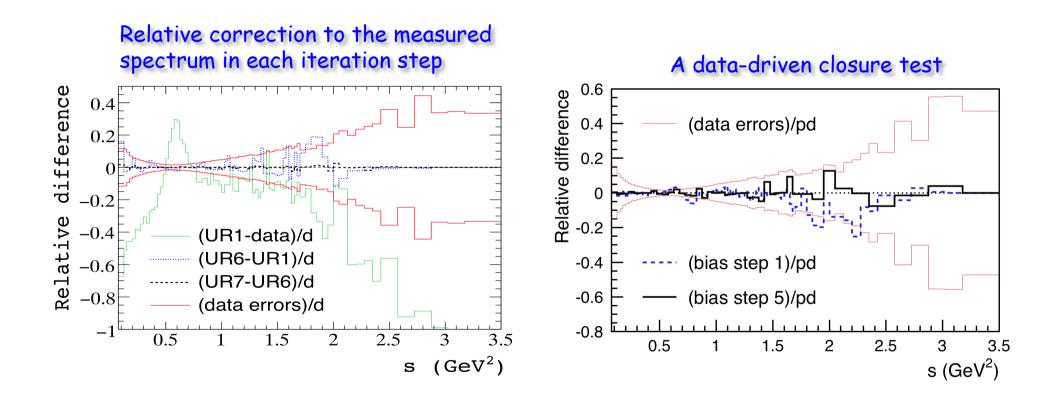
 $\vec{\mu} = g \frac{\pm e}{2m} \vec{s}$ $g = 2 + \cdots$ \Rightarrow Magnetic Moment anomaly: $a_l = \frac{g - 2}{2}$

 a_e is better measured but a_{μ} is more sensitive to new physics effects by (m_{\mu}/m_e)^2 {\sim} 43000)

SM Predictions:
$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{had} + a_{\mu}^{Weak}$$

 $a_{\mu}^{had} = a_{\mu}^{had,LO} + a_{\mu}^{had,HO} + a_{\mu}^{had,LBL}$ Leading-Order Higher-Order Light-By-Light
 $a_{\mu}^{had,LO} \sim (700 \pm 5) \times 10^{-10}$
 \Rightarrow dominant uncertainty
(both e'e' and τ based)
 $a_{\mu}^{had,HO} = (-9.8 \pm 0.1) \times 10^{-10}$
 $a_{\mu}^{had,LBL} \sim (10.5 \pm 2.6) \times 10^{-10}$

Comparing Measurements with Predictions


<u>Measurement</u> (BNL-E821) PRD73(06)072003, hep-ex/0602035	$11\ 659\ 208.9\ \pm\ 5.4_{\rm stat}\ \pm 3.3_{\rm syst}\ [10^{-10}]$
<u>SM predictions</u> :	
QED	11 658 471.809 $\pm 0.014_{5 \text{th order}} \pm 0.008_{\delta \alpha} [10^{-10}]$ Improved (Kinoshita et al.)
HAD - LO	DHMZ10 e ⁺ e ⁻ : $692.3 \pm 4.2 \pm 0.2_{\psi} \pm 0.3_{QCD}$ [10 ⁻¹⁰] HLMNT11 e ⁺ e ⁻ : $694.9 \pm 3.7 \pm 2.1_{rad}$ [10 ⁻¹⁰] DHMZ10 τ : 701.5 $\pm 4.2 \pm 0.3_{rad} \pm 1.9_{SU(2)}$ [10 ⁻¹⁰]
- HO - LBL	$\begin{array}{rrrr} -9.8 & \pm & 0.1 & [10^{-10}] \\ 10.5 & \pm & 2.6 & [10^{-10}] \end{array}$
Weak	15.4 ± 0.2 [10 ⁻¹⁰]

New Unfolding Method

- New: Iterative, Dynamically Stabilized (IDS) method
- Old: Singular Values Decomposition (SVD) method

0907.3791, 1106.3107 Hep-ph/9509307

Both methods were developed by members of our collaboration and widely used in different analyses

