Multiquarks and molecules

Jean-Marc Richard

Institut de Physique Nucléaire de Lyon Université Claude Bernard (Lyon 1)–IN2P3-CNRS Villeurbanne, France

Clermont-Ferrand, FCPPL meeting, April 8, 2014

Table of contents

Content

- X(3872) and X(3900)
- (n, n, Λ, Λ)

Work done in collaboration with Qiang Zhao (IHEP) and Qian Wang (Juelich),

and Emi Kou et al. for the first part.

X(3872)

- X(3872) seen in several experiments
- BELLE, BABAR, CDF, D0
- More recently at LHC
- Firmly established, $J^{PC} = 1^{++}$
- $M = 3871.68 \pm .17 \,\text{MeV}$ (PDG) $\Gamma = 3.9^{+2.8+0.2} \,\text{MeV}$
- Decay mostly into $D\bar{D} + c.c.$, $D\bar{D}\pi$

X(3872) Theory

- Predicted in a molecular model (Törnqvist, Voloshin, ...)
- Also studied in a diquark model (Maiani et al.)
- Several studies with QCD SR (Nielsen, Narison, S.-L. Zhu et al., Z.-G. Wang,...)
- Firmly established
- Chromomagnetic model (Høgassen et al.)

- Favours one isospin
- Due to $\tau_1.\tau_2$ factor
- Historically, this was a problem in "bootstrap" theory, where mesons were mostly baryon-antibaryon
- Factor 3 better for I = 0
- Again, due to τ₁.τ₂ factor
- Favours *I* = 0 vs. *I* = 1

PHYSICAL REVIEW D 73, 054013 (2006)

Chromomagnetic mechanism for the X(3872) resonance

H. Høgaasen, 1.* J.-M. Richard, 2.† and P. Sorba3.‡

¹Department of Physics, University of Oslo, Box 1048 NO-0316 Oslo Norway

²Laboratoire de Physique Subatomique et Cosmologie, Université Joseph Fourier–IN2P3-CNRS

³S, avenue des Martyrs, 38026 Grenoble cedex, France

³Laboratoire d'Annecy-le-Vieux de Physique Théoriaue (LAPTH)

9 chemin de Bellevue, B.P. 110, 74941 Annecy-le-Vieux Cedex, France (Received 3 November 2005; published 17 March 2006)

The chromomagnetic interaction, with proper account for flavor-symmetry breaking, is shown to explain the mass and coupling properties of the X(3872) resonance as a $J^{pC} = 1^{+4}$ state consisting of a heavy quark-antiquark pair and a light one. It is crucial to introduce all the spin-color configurations compatible with these quantum numbers and diagonalize the chromomagnetic interaction in this basis. This approach thus differs from the molecular picture D^{pC} and from the diquark—anti-diquark picture D^{pC} and D^{pC} are D^{pC} and D^{pC} are a sum of D^{pC} and D^{pC} and D^{pC} and D^{pC} are a sum of D^{pC} and D^{p

annihilation term and $m_d - m_u = 3.5$ MeV, the "mostly I = 1" state lies 31 MeV above the "mostly I = 0" state.

Chinese collider expands particle zoo

China's Beijing Electron-Positron Collider seems to be hosting a reunion; members of a poorly understood family of particles keep popping up in their data, which may help clarify the properties of this reclusive family.

Observation of a Charged Charmoniumlike Structure in $e^+e^-\to \pi^+\pi^-$ J/ψ at \sqrt{s} =4.26 GeV

BESIII Collaboration (M. Ablikim (Beijing, Inst. High Energy Phys.) et al.) Afficher les 354 auteurs

Mar 24, 2013 - 7 pages

to charmonium. A fit to the π±J/ψ invariant mass spectrum, neglecting interference, results in a mass of (3899.0±3.6±4.9) MeV/c2 and a width of (46±10±20) MeV. Its production ratio is measured to be

Study of $e^+e^- o \pi^+\pi^-J/\psi$ and Observation of a Charged Charmoniumlike State at Belle

Belle Collaboration (Z.Q. Liu (Beijing, Inst. High Energy Phys.) et al.) Afficher les 187 auteurs

Mar 30, 2013 - 7 pages

Chromomagnetic model

$$H = M + H_{\mathrm{CM}} = \sum_{i} m_{i} - \sum_{i,j} C_{ij} \, \tilde{\lambda}_{i} \cdot \tilde{\lambda}_{j} \, \boldsymbol{\sigma}_{i}. \boldsymbol{\sigma}_{j} \; ,$$

- Gives X(3872) with right mass and decay properties
- I = 0 and I = 1 degenerate
- Annihilation term predicted the right splitting
- X is mainly $(c\bar{c})_8(q\bar{q})_8$

Beauty partners of X(3872) and $Z_c(3900)$

Physics Letters B 732 (2014) 97-100

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Isovector and hidden-beauty partners of the X(3872)

Hallstein Høgaasen a, Emi Kou b, Jean-Marc Richard c,*, Paul Sorba d

- ² Department of Physics, University of Oslo, Box 1048, NO-0316 Oslo, Norway
- b Laboratoire de l'Accélércteur Linéaire, Université Poris-Sud, IN2P3-CNRS, Centre Scientifique d'Orsay, 91 898 Orsay Cedex, France
 C Université de Lyon, Institut de Physique Nucléaire de Lyon, UCBL-IN2P3-CNRS, 4, rue Enrico Fermi, 69622 Villeur bonne Cedex, France
- d LAPTh. Laboratoire d'Annecy-le-Vieux de Physique Théorique, CNRS. Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France

d

$$H = M + H_{\text{CM}} + H_{\text{CE}} = \sum_{i} m_{i} - \sum_{i,j} C_{ij} \, \tilde{\lambda}_{i} \cdot \tilde{\lambda}_{j} \, \boldsymbol{\sigma}_{i}.\boldsymbol{\sigma}_{j} - \sum_{i,j} A_{ij} \, \tilde{\lambda}_{i} \cdot \tilde{\lambda}_{j} \; ,$$

- One quadruplet near 10.62 GeV
- No possibility of two charged triplets with $J^{PC} = 1^{++}$ at about the same mass

Summary Part 1

- For a review of other approaches, see Q. Zhao at Beijing Chiral Workshop
- Near degeneracy of I = 0 and I = 1 natural in a quark picture
- Molecular model predicts a difference between I = 0 and I = 1
- Radiative decay seems crucial, in particular

$$rac{X(3872)
ightarrow \psi(2s) + \gamma}{X(3872)
ightarrow J/psi + \gamma} \gg 1$$

- See, the recent review by S.L. Zhu et al.
- See the recent better measurement by LHCb

Summary Part 1

X 3900 is a local speciality

L'autorail X 3900

Part 2: New light hypernuclei

- Much activity in the "molecular' model,
- meson-meson, baryon-baryon, baryon-antibaryon, etc.
- stimulated by X(3872) and other states in the heavy-quark sector
- also for nucleon-hyperon systems = light hypernuclei
- Qiang Zhao (IHEP) Qian Wang (Jülich) and JMR, to be posted and submitted next week
- and presented next month at the Conference on Nuclear Clusters (Yokohama)

Light hypernuclei: survey

- NA not bound
- ΛΛ not bound, but might be attractive at short distances
- See, speculations on *H* dibaryon (Jaffe, ...)
- ${}^3_{\Lambda}{\rm H}=(n,p,\Lambda)$ bound slightly below ${}^2{\rm H}+\Lambda$
- This probes the ΛN interaction of the Nijmegen + Japan group fitting the (rare) scattering data and constrained from NN by SU(3)_F
- ${}^{5}_{\Lambda}{\rm He}=(\alpha,\Lambda)$ bound, another example (More in Sakaguchi, 2009)
- Double hypernuclei also seen
- "Nagara" event ⁶_{ΛΛ}He seen
- Indicates a weak attraction for ΛΛ in medium
- Suppression of $\Lambda\Lambda \leftrightarrow N\Xi \leftrightarrow \Lambda\Lambda$ due to Pauli principle

Borromean binding

- Thomas (1935), Zhukov et al. (1993) milestones to stress the possibility of Borromean binding
- Bound state whose subsystems are unbound

- In quantum mechanics for bosons, a short-range attractive potential $g\ V(r)$
- Needs $g > g_2$ to bind (m, m)
- Needs $g > g_3$ to bind (m, m, m)
- With $g_3 < g_2$ [g_3, g_2] Booromean windows

Borromean binding

- Example 6 He = (α, n, n) is stable
- while neither (α, n) nor (n, n) are bound
- Rigorous limit $2g_2/3 < g_3$ can be established
- And generalized to unequal masses and coupling, and to N > 3 body systems

So, some hope is permitted

Borromean binding

The amount of Borromean binding, for given scattering length, depends on the effective range a point sometimes overlooked.

Results

- Very delicate 3-body and 4-body calculations
- With $V = -g_{ij} \exp(-r)$, r in GeV, tuned to reproduce the scattering lengths (n, p), (n, p, Λ) OK, (n, n, Λ) unbound, (n, p, Λ, Λ) and (n, n, Λ, Λ) stable, but effective range too small
- With V = -g_{ij} exp(-0.2 r), r in GeV,
 (n, p), (n, p, Λ) OK, (n, n, Λ) unbound, (n, p, Λ, Λ) bound and (n, n, Λ, Λ) unstable, but effective range too large,
- With $V = g_{ij} \exp[-2\alpha_{ij}(r-R)] 2 g_{ij} \exp[-\alpha_{ij}(r-R)]$ (Morse), and a reasonable R, one can adjust g_{ij} and α_{ij} to reproduce the scattering length and effective range for each pair, then $(n,p), (n,p,\Lambda)$ OK, (n,n,Λ) unbound, (n,p,Λ,Λ) bound and (n,n,Λ,Λ) very weakly bound
- First indication for this neutral configuration
- Which is fully Borromean

Production mechanism

Production mechanism for the tetra-baryon state (ΛΛnn) in deuteron-deuteron collision

- The two K⁺ production is via the elementary process, pp→ ΛΛK⁺K⁺.
- The intermediate S11(1535) excitations dominate the threshold production.

Production mechanism

- Preliminary estimate (still under checking)
- Total, and Born term, double N(1530), single N(1530) contributions

Conclusions

$Z_c(3900)$

- $Z_c(3900)$ expected in models based on quark dynamics
- Predictions for hidden beauty

Neutral tetrabaryon

- New light hypernuclei expected such as (n, n, Λ, Λ)
- In a regime of extreme Borromean binding

