Electronics in TUNE

- ASIC and WR

Prof. Yinong Liu

Department of Engineering Physics Tsinghua University, Beijing, China

2014.4

The Laboratory

- TUNE The Laboratory of Nuclear Electronics at Tsinghua University, Beijing, China
- Chinese "т清华u大学ν核ε电子学"

Established since 1956

Education

- Courses
 - Nuclear Electronics
 - Nuclear Instrumentation
 - Electro-Magnetic Compatibility
 - Embedding System
 - Real-time operation system µCOS

Education

- Student Exercise
 - Preamp, Noise measurements
 - Pulse Shaping , Pulse Height Analyzer
 - Discriminator, Time
 - μC, FPGA
 - ARM Freescale University program

Research

- Analog
 - ASIC low noise amplifier
 - **—** ...
- Digital
 - WR Ethernet based, sub-nanosecond time distribution network

— ...

ASIC – low noise

- Low noise preamplifiers
- CMOS MPW $0.6 \rightarrow 0.35 \rightarrow 0.18 \mu m$
- GEM, CZT, point contact HPGe
- Zhi Deng, Associate Professor

CASAGEM

	CASA	PASA	LEGS-TPC	PCA
Noise	293-455e@7.7pF	560e@12pF	100e+25e/pF	270e@10pF
Gain	1-19mV/fC	12mV/fC	17-32mV/fC	9.5mV/fC
Pulse Width	100-400ns, peak	188ns, FWHM	600ns, peak	100ns, FWHM
Crosstalk	<0.98%	<0.1%	unknown	0.3%
Power	8.9mW/ch	11mW/ch	1.25mW/ch	10mW/ch
Process	0.35μm	0.35μm	0.25μm	0.13μm

CAPS

CZT, CSA, shaper

Channel

PPC-HPGe

~1pF capacitance

Am-241 Spectrum (Cd~3pF, Id=23pA)

CAPS

32 channels, CZT, CR-(RC)² shaper, discriminator, peak detection/holding, serial output

CAD

4 channels current amplifier and discriminator jitter < 10 ps ($i > 20~\mu A$), for MRPC

TIMPIC

16 channels, SiPM read out time and amplitude TDC reading

Na-22 spectrum with LYSO

SCA

32 channels Switch Capacitor Array

White Rabbit

- WR White Rabbit
- Ethernet based, sub-nanosecond time distribution network
- Guanghua Gong, Associate Professor

White Rabbit

- Main features
 - Transparent, high-accuracy synchronization
 - Low-latency, deterministic data delivery
 - Designed for high reliability
- Accelerator's control and timing
- International Collaboration
- Based on Well-known technologies

Applications of WR

WR — sub-ns synchronization

Long distance: 10km

Multi Nodes : 2000~10000

Accuracy : <1ns Precision : 10ps

- Common clock for the entire network
 - All devices use the same physical layer clock
 - Clock encoded in the Ethernet carrier
 - Recovered by the receiver chip
 - Not affected by network traffic load

Precision Time Protocol (IEEE1588)

Having values of $t_1...t_4$, slave can:

- calculate one-way link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
- syntonize its clock rate with the master by tracking the value of t₂ - t₁
- compute clock offset: $offset = t_2 t_1 + \delta_{ms}$

Timestamp Synchronization

- Precision time protocol(IEEE1588-2008)
 - Targeted for LXI (LAN-based eXtensions for Instrumentation) application.

- Exchange of packages with timestamp embedded
- delay and offset are calculated and compensated.
 - ~100ns precision achieved

WR Asymmetric link model

- Link delay
 - Propagation speed difference due to W Diber calibration
- Fixed delay
 - PCB layout delay
 - Pin-to-Reg delay inside FPGA
 - Fiber driver/Receiver delay

WR Asymmetric link model

Solution for Ethernet over a Single-mode Optical Fiber

asymmetry =
$$\Delta_{tx_m} + \Delta_{rx_s} - \frac{\Delta - \alpha\mu + \alpha\Delta}{2 + \alpha}$$

DMTD

PTP limitation

TUNE

- Clock-cycle granularity (8ns for 125MHz)
- Take advantage of SyncE and measure phase shift
 - tx/loopback clock phase shift measured at master side
 - Recovered clock adjusted by PLL at slave side
- Phase tracking by DDMTD
 - Dual Mixer Time Difference
 - Digital implementation: linear, low cost, resource saving

Phase

alignment

WR components

A White Rabbit network is composed of

Clock/Freq reference (optional)

WR switch

Fiber links/cables

WR nodes

Proof

WR Switch

by Seven Solutions

- Xilinx Virtex 6, Atmel AT91SAM9G45
- 18 cages for Gigabit SFPs, 10/100 Ethernet management port
- 5 SMC connectors (1-PPS in/out, CLK in/out)
- designed and produced by Seven Solutions in cooperation with CERN
- schematics, PCB design and mechanical drawings in the public OpenHardware repository

- Central element of WR network
- Original design optimized for timing, designed from scratch
- 18 1000BASE-BX10 ports
- Capable of driving 10 km of SM fiber
- Open design (H/W and S/W)

WR Node: carrier boards

- PCI-Express/VME/PXI/uTCA form carrier boards:
 - Logic/Memory/Process
 - WR circuit/SPF-Port/WRPC
 - FMC mezzanine connectors
- AD/DA/IO with FMC mezzanine cards

ADC

DAC

Time-to-Digtal

Fine delay

WR port

Application mode for CERN/GSI

WR Nodes: Cute-WR

- FMC form WR mezzanine
 - WR circuit/SFP-Port/WRPC
 - FMC mezzanine connector

Application mode for LHAASO

Large High Altitude Air Shower Observatory

LHAASO detector

- KM2A:
 - 5632 Electron detector, 15m spacing
 - 1221 μ detector, 30m spacing
- WCDA: Water Cherenkov Detector Array
 - $-4 \times (150 \times 150) \text{ m}^2$
 - 3600 detector units
- WFCTA: Wide FOV Cherenkov Telescope Array
 - 24, 300m spacing
- SCDA: Shower Core Detector Array
 - 5000m², 452 core detectors

Over 6,000 detector units Spread around 1km² area

0.5° Angular resolution for shower reconstruct from *timing* of hits TOA

Synchronous timing among detectors

1000m coax cable in 30°C change, Δ delay = 15ns!

WR performance (@CERN)

WR test (@Tsinghua)

- Test includes:
 - 4 WR switch v3.3
 - 8 Cute-WR nodes
 - Rolls of SM fiber (few km each)
- Performance test
 - Precision/accuracy test
 - Consistency test
 - Topology test
- measurement
 - Set the PPS from top-level WRS as reference.
 - Measure the offset between PPS signals from other WRS/Cute-WR
 - Results include different situations:
 - Fiber length, WR nodes, SFP modules, WRS ports, connections, power-cycle, link-up, components exchange,

WR performance (@Tsinghua)

Parallel topoloty

WR performance (@Tsinghua)

Cascade topoloty

One layer less than KM2A deployment

WR temp. effect

 Fiber temp. variation is compensated by DMTD&PTPv2

Temp. effect of Cute-WR fixed delay can be problem

- Temp. range 0-50 degree
- Environmental temp. are monitored.

Temp. record

temp. dependency of Cute-WR fixed delay

$$\blacksquare (\delta_{\rm txs} + \delta_{\rm rxs}) \sim 5 \rm ps/^{\circ} C$$

After temp. compensation

■ A temp. range of 50°C, 50ps accuracy can be achieved after temp. compensation

