

ALICE Muon Spectrometer upgrade

The ALICE Upgrade program Muon Tracking Upgrade Muon Trigger Upgrade Conclusions and Perspectives

The ALICE Upgrade

- **Motivations**: precision measurements of the QGP properties

 Lol for the ALICE Upgrade, CERN-LHCC-2012-012, http://cds.cern.ch/record/1475243
- ☐ Conditions: increase of the LHC luminosity
 - High interaction rate : 50 kHz in Pb-Pb (L_{peak}=6 10²⁷ cm⁻² s⁻¹)
 - To be compared to 8 kHz peak during LHC run1
- □ Strategy
 - Hardware triggers not very selective in HI
 - ⇒ readout all MinBias (MB) (~1 TB/s)
 - \Rightarrow online reduction (O² project, 80 MB/s peak storage)
 - Large statistics : Pb-Pb at \sqrt{s} =5.5 TeV, L_{INT} ~10 nb⁻¹ (10¹¹ MB events)
 - ⇒ factor 10 as compared to approved program up to LS2
- □ Upgrade program
 - ITS, TPC chambers, online-offline (O²), Muon Forward Tracker (MFT)
 - Readout and Trigger electronics, CERN-LHCC-2013-019, http://cds.cern.ch/record/1603472
- ☐ Installation during LS2 (2018-2019), data taking during LHC run3 and run4

ALICE Common Readout Unit (CRU)

- ☐ For very large data flow readout
- ☐ Based on AMC40 (from LHCb)
- □ 1 AMC40 => 36 optical inputs + 36 optical outputs @ up to 10 Gbit/s each
- 4 AMC40 in 1 mother board
- □ 14 mother boards in 1 ATCA crate
- ☐ Trigger and timing distribution is via back plane

The ALICE Muon Spectrometer

- □ Muon TracKing: cathode pad/strip chambers, 10 planes, 100 m², 1 Mch, spatial resolution < 100 μm
- □ Muon TRigger: 72 Resistive Plate Chambers, 140 m², 21 kch, muon p_T based trigger decision (LOCAL & REGIONAL cards)
- ☐ Dipole magnet : world largest warm dipole, 800 tons, 3 T.m., 4 MW
- □ Absorbers: 7 tons of tungsten, 11 tons of iron, 41 tons of lead

Nuclear Matter (QGP) study via quarkonia and open heavy flavor in muonic channel

Muon Spectrometer Upgrade

- ☐ Current Muon Spectrometer (MS) = Muon TracKer (MTK) and TRigger (MTR)
 - Addition of the Muon Forward Tracker (MFT) during LS2, close to the IP, in the MS acceptance

□ Physics motivations

- J/ ψ RAA, v2 and polarization (with large statistics), down to p_T=0
- $\psi(2S)$ (with large statistics), down to $p_T=0$
- (with MFT) Prompt J/ψ vs. J/ψ from B meson decays, down to p_T=0
- (with MFT) Open charm/beauty separation, down to p_T~1 GeV/c

□ Dead time free readout

- Up to 50 (200) kHz MB in Pb-Pb (p-p)
- Front-End Electronics (FEE) upgrade
- Readout Electronics upgrade
- No detector upgrade foreseen so far

Muon Tracker Upgrade

☐ Dead time free readout up to 100 kHz in Pb-Pb MB (x2 safety)

- Present readout limit < 1 kHz</p>
- Max. expected data flow of 2.5 GB/s (design value = 200 GB/s)
- All the FE and readout electronics must be replaced
- ☐ (wo spares) 17.000 FE cards (64 ch.) with 2 **SAMPA** ASIC each=> **1M channels**
- ☐ (wo spares) 34.000 SAMPA ASIC (common to MTK and TPC) 32 ch. each
- □ 500 GBT patch-panel
- □ 20 CRU

2016-2017 : Production

LS2 : Installation

Muon Tracker Upgrade : SAMPA ASIC

- ☐ SAMPA is evolution from PASA / ALTRO & S-ALTRO
 - Common to MTK and TPC
- Baseline specifications
 - 130 nm TSMC CMOS process
 - 32 channel amplifier-shaper-ADC-DSP
 - triggerless/continuous & triggered readout
 - On ASIC base-line correction and zero suppression
 - Bi-polarity input
 - 4 x 320 Mbit/s serial outputs
 - 10 bit ADC 10/20 Msamples/s

☐ Specific to MTK

- Input charge < 500 fC
- Request noise < 2000 electrons
- 330 ns shaping time
- 10 MHz ADC sampling
- Uses only 1 output link at 80 Mbit/s

&

Continuous readout

Muon Trigger Upgrade : FE electronics of the RPC detectors

- ☐ 20992 ch, 2384 FEE cards
- Present FEE : no amplification
- ☐ Future FEE ⇒ with amplification
 - Limit RPC aging (x 3-5)
 - Increase of the max. counting rate from ~50 Hz/cm² to 200 Hz/cm²
- R&D program started in 2012
 - New ASIC (FEERIC) and FE card
 - ASIC 0.35 µm CMOS technology
 - 8 channels, bi-polarity input
 - Dynamic range from 20 fC < q < 3 pC
 - Resolution <500 ps for q > 100 fC

- LS1: equip 1 RPC (/72) in the cavern with 40 FEERIC cards
- Run2: test in realistic conditions + production
- LS2 : installation

Muon Trigger Upgrade : readout electronics

- Dead-time free readout up to 100 kHz MB in Pb-Pb (x100 above present design), ~300 MB/s (expected)
- Muon Trigger hw decision not needed anymore=>Muon Identifier (MID)
- Replacement of the 234 LOCAL cards and of the 16 REGIONAL cards presently installed
- 1 CRU in counting room only

■ 2014-2016 : LOCAL and REGIONAL

2016-2017 : Production

LS2 : Installation

Conclusions and Perspectives

■ Muon TracKer and TRigger

- Dead time free readout up to 100 kHz MB Pb-Pb
- Replacement of the front-end and readout electronics
- Major online/offline implications

□ TDR: http://cds.cern.ch/record/1603472

dec. 2013 : presentation to LHCC

■ march 2014 : endorsement by LHCC

■ june 2014 : approval (?)

□ Schedule: R&D 2014-2016; Construction 2015-2017; Installation LS2

☐ Involved countries: Brazil, France, India, Italy, Korea

■ Estimated cost and human effort

	Muon TracKer upgrade	Muon TRigger upgrade
Core cost (kCHF)	2852	780
Manpower (FTE up to LS2)	30	20

Backup slides