

MFT: An Internal Forward Tracker for the ALICE Muon Spectrometer

Ginés MARTINEZ (Subatech, Nantes)

ALICE: Study of the Quark Gluon Plasma at the LHC AL

Experimental study of the hadronic-matter phase diagram by means of the heavy ion collisions at ultra relativistic energies

Heavy Quark Production

One of the most promising probes to study the QGP in heavy-ion collisions

- Heavy flavours produced in initial hard scatterings & experience the full evolution of the system: sensitivity to medium properties.
 - Nuclear modification factor mass and colour charge dependence of parton energy loss: $(\Delta E)_q > (\Delta E)_{(u,d,s)} > (\Delta E)_{(c,b)}$.
 - Elliptic flow: transport coefficients of heavy quarks in the medium, degree of thermalization of heavy quarks in QGP (low p_T) and path length dependence of heavy quark energy loss (high p_T).

Quarkonium Production

Privileged witness of the deconfined phase.

- Bound states of heavy quarks that would melt in the QGP at different temperatures.
- Formed quickly (<1 fm/c) after the heavy quark production
- But quarkonium could be formed in later stage, at lower temperatures, if ρ_O is large: Recombination.

ALICE Detector

ALICE-France

IPHC Strasbourg

IPN Lyon

IPN Orsay

IRFU Saclay

LPC Clermont

LPSC Grenoble

Subatech Nantes

|η|<0.8 D mesons, HFE, quarkonium e⁺e⁻ and 2.5<η<4.0 HFM, μ⁺μ⁻

ALICE is the unique experiment to measure J/ ψ quarkonium down to p_T=0

- J/ ψ R_{AA} larger at the LHC.
- Flat shape.
- Upsilon(2S) melt at the LHC (CMS result).

Inclusive J/ ψ : ~90% prompt and ~10% from B decays.

Large $J/\psi R_{AA}$ at low pT

- At low p_T charm density is larger.
- At y=0 charm density is larger.

B decays contribution increase with p_T.

ALICE Collaboration, arXiv:1311.0214 (2013)

Large $J/\psi R_{AA}$ at low pT

- At low p_T charm density is larger.
- At y=0 charm density is larger.

ALICE Collaboration, arXiv:1311.0214 (2013)

Inclusive J/ψ: ~90% prompt and ~10% from B decays.

The golden measurement of the quarkonium elliptic flow.

- Difficult measurement.
- It favours non-zero
 J/ψ elliptic flow
 (2.4σ).
- B feed-down is a limitation!

B contribution could be very high, depending on B v_2 .

Recombination at the LHC? What about $\psi(2S)$?

- Small S/B ratio.
- Large uncertainties.
- Difficult to conclude.

The golden reference and quarkonium genesis

Measurement of open heavy flavours : charm and beauty, is mandatory.

- Suppression is observed for p_T>4 GeV.
- Decreasing to lower p_T is crucial.

Disentangling beauty and charm contributions and reaching lower p_T reach is challenging.

The golden reference and quarkonium genesis

Measurement of open heavy flavours : charm and beauty, is mandatory.

- Non-zero elliptic
 flow of HFM
 measured for p_T>3
 GeV.
- Decreasing to lower p_⊤ is crucial.

Disentangling beauty and charm contributions and reaching lower p_T reach is challenging.

The surprise

A new observable of the QGP?

- Excess of J/ ψ yield observed at low p_T (p_T<300 MeV).
- Observed in semiperipheral Pb-Pb collisions.
- Photo-production is the natural candidate.

ALICE Collaboration,
A. Lardeux, Hot Quarks Q2012

ALICE

ALICE Detector Upgrade

Increase luminosity (100 kHz IR) and improve vertexing and tracking capabilities of ALICE at low p_T .

Extension of EMCAL (DCAL) LS1

TRD, TOF,
PHOS: upgrade
of the readout
electronics

New beam pipe
with smaller
radius
29mm → 18.0 mm

Upgrade of the forward detector triggers (ZDC, TO, VZERO) for high rate operations

TPC: replacement of the readout multi-wire chambers (MWC) with Gas Electron Multiplier (GEM) detectors and new pipelined readout electronics New ITS, high resolution. low-materialthickness Inner Tracking System Muon spectrometer MFT project upgrade of the readout electronics

ALICE Upgrade documents

Letter of Intent:

- ✓ ALICE
- ✓ ITS
- ✓ MFT

TDR:

- √ Readout-Upgrade
- ✓ ITS
- ✓ TPC
- ✓ O2 (in progress)
- √ MFT (in progress)

Strategy of the ALICE collaboration 2015-2025

Low pT and |y|<4 coverage for heavy flavours, quarkonium, di-lepton and jet chemistry in heavy ion collision.

- ✓ Heavy flavours: measurement of the total production crosssection.
- ✓ Quarkonium: Precision measurement of the dissociation and recombination of quarkonium states.
- ✓ Low mass di-lepton: Measurement of the thermal virtual photons and the rho meson spectral function.

 MFT+MUON

✓ Jets: Particle identification in jets, low p_T c and b jets and dissipation of the lost energy in the medium.

ALICE Muon Spectrometer

New read-out electronics at 100 kHz IR. Muon trigger → Muon ID

Muon Forward Tracker: An internal Forward Tracker for the ALICE Muon Spectrometer.

Many new physics cases become accessible.

Topic	Observable	MUON upgrade	MUON + MFT upgrade
Heavy flavour	R_{AA} (J/ψ from B)	Unmeasurable	p⊤>0 ; 10% (to be improved "à la LHCb")
	v ₂ (J/ψ from B)	Unmeasurable	Not evaluated yet
	μ decays from c -hadrons	Unmeasurable	p⊤>1;7%
	μ decays from b -hadrons	Unmeasurable	p⊤>2 ; 10%
Charmonia	R_{AA} (prompt J/ψ)	Unmeasurable	рт>0 ; 10%
	v ₂ (prompt J/ψ)	Unmeasurable	Not evaluated yet
	ψ'	рт>0 ; 30%	рт>0; 10%
Low Mass	Low Mass spectral func. and QGP radiation	Unmeasurable	рт>1;20%

MFT detector in a few words.

- Precision of the tracking: tens of μm.
- 2000 charged particles per unit of rapidity.
- Challenging integration and matching between muon and the MFT tracks.

MFT Standalone tracking

In progress

Implementation of the algorithm "cellular automaton" in AliRoot. NIM A489 (2002) 389

The displacement of the J/ ψ vertex: A measurement of the open beauty down to p_T=0.

Lorentz Boost facilitates the measurement at low p_T . Longitudinal displacement analysis in progress. Unique at the LHC for p_T =0.

HFM: Separation between beauty and charm.

- Rejection of secondary interactions in the absorber.
- Rejection of muons from π and K weak decays.
- Separation of the beauty and charm.
- Charm measurement down to p_T=1 GeV of the HFM.

The measurement of the $\psi(2S)$.

Improvement of the precision on $\psi(2S)$.

S/B ratio increases by a factor 3-5.

Vector mesons and low masses

Only ALICE can address this physics case at forward rapidity.

Silicon Pixel Sensor

R&D in progress. Joint effort ITS and MFT

- ✓ MAPS (Monolithic Active Pixel Sensors) CMOS 0.18 µm from TowerJazz technology.
- ✓ 50 μm thickness
- ✓ Radiation hard: 700 kRad (dose)
 et 10¹³ neq/cm² (neutron
 equivalent).
- ✓ Final architecture to be chosen at the end of the year.

Ladders, planes and half disks

MFT readout system

Standard ALICE readout architecture.

- ✓ Sensor-FEE-DAQ.
- ✓ Design for Pb-Pb-MB 100kHz with a 3 fold security factor.
- ✓ Mapping has been optimised: 166 optical links ~3 GB/s (6 detection planes).

mm				
	Front	Back		
Half Plane 0b	6 GBT's	6 GBT's		
Half Plane 0	6 GBT's	6 GBT's		
Half Plane 1	8 GBT's	7 GBT's		
Half Plane 2	7 GBT's	7 GBT's		
Half Plane 3	7 GBT's	7 GBT's		
Half Plane 4	8 GBT's	8 GBT's		
TOTAL whole MFT	166 GBT's			
<u> </u>				

MFT Mechanics and integration

Challenging: between FIT and ITS and around the beam-pipe.

MFT cooling

- ✓ MFT Power ~1.5 kW.
- ✓ Cooling with air seems possible (Lol studies).
- ✓ New thermal studies on going with new hypothesis, detailed MFT description, DC-DC converters.
- ✓ Vibration studies to be done.

ALICE

Addendum of the ALICE Lol

Approved by the LHCC on Sep 26th

http://cds.cern.ch/record/1592659?ln=fr
Next:

MFT TDR for the end of the year.

MFT collaboration: Clermont-Lyon- Kolkata-Nantes-Saclay-St.Petersbourg

Synergy with ITS: Strasbourg, CERN, Korea? Thailand? China?

ALT CE

Conclusions

- ✓ ALICE experiment will perform unique studies of QGP at the LHC. Upgrade program is planned for run3.
- ✓ Heavy flavour and quarkonium probes are measured by the ALICE muon spectrometer.
- ✓ A new internal tracking system: MFT will open new physics studies: Beauty / Charm separation and prompt J/ψ and ψ(2S).
- ✓ MFT is a challenging project. Same technology as the new ALICE ITS upgrade.
- ✓ Our Chinese colleagues are welcome to join the MFT detector project.

