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Talk plan

The plan of this talk is the following:

Classical electrodynamics introduction to radiative corrections

Ultraviolet catastrophe
Infrared catastrophe

Quantum electrodynamics definition

Illustrative process: electron–proton scattering

Virtual Corrections

Infrared divergency
Ultraviolet divergency

Ultraviolet divergency treatment

Infrared divergency treatment

Collinear singularity

Structure Functions method

Application of the radiative corrections to a selected process

Conclusion
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Types of Radiative Corrections

In experiment one usually wants to study the process of hard scattering with
simple interaction.
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Types of Radiative Corrections

But reality is slightly more complicated...

Material 1

Material 2

External

Bremsstrahlung
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Classic Electrodynamics

It is know from the classical electro-
dynamics that any electrically charged
matter being accelerated emits electro-
magnetic waves.

Illustrations are taken from ”The Elementary Process of Bremsstrahlung” by
Eberhard Haug and Werner Nakel

dP

dΩ
=
e2v̇2

4πc3
sin2 θ

(1− β cos θ)5
.
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Classic Electrodynamics: Self-Interaction (UV)

The problem of infinities first arose in the classical
electrodynamics of point particles in the 19th century.

Once electromagnetic field possess energy–momentum
it was tempting to associate this energy as the source
of the electron mass. Assuming that the electron is a
charged spherical shell of radius re one can estimate
the energy (mass) in its field as

r
E(r)

mc2 =
1

2

∫

E2 (r) dr ∼
∞
∫

re

( e

r2

)2

r2dr =
e2

re
,

which becomes infinite in the limit as re approaches zero. This implies that the
point particle would have infinite inertia, making it unable to be accelerated. Thus
we can define the ”radius of electron” re , which determines the spatial region size
where classical approach becomes unapplicable:

re =
e2

4πε0mc2
= α

~

mc
≈ 2.8× 10−15 m.
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Classic Electrodynamics: Small Energy Emission (IR)

1. Classical spectrum (1).
2. Quasi-classical spectrum.
3. Bethe–Heitler quantum result.

The spectrum of bremsstrahlung in
scattering of fast but not relativistic particle
with charge q1 and mass M on charge q2 at
rest within classical electrodynamics:

χ (ω)dω =

=
16

3

q22
c

(

q21
Mc2

)2
( c

v

)2

ln

(

aMv3

q1q2ω

)

dω.

~ω σbrems (ω) d (~ω) = χ (ω) dω =
16

3

q22
c

(

q21
Mc2

)2
( c

v

)2

ln

(

aMv3

q1q2ω

)

dω. (1)
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Quantum Electrodynamics: Definition

The Quantum Electrodynamics (QED) is the gauge U(1) theory with the
following lagrangian:

L = ψ̄
(

i/∂ −m
)

ψ − 1

4
FµνF

µν − eψ̄γµψA
µ, (2)

where e =
√
4πα is the lepton charge modulus and α ≈ 1/137 is the

fine-structure constant. Electromagnetic field tensors Fµν has the form:
Fµν = ∂µAν − ∂νAµ. This gives us Feynman Rules:

p
S (p) = i /p+m

p2−m2+iε
k

µ � Dµν (k) = −i gµν

k2−λ2+iε

−ie ψ̄γµψAµ
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Example: Electron–Proton Scattering

p(p2)

e−(p1) e−(p3)

q

p(p4)

Here q = p1 − p3,
and

τ =
−q2
4M2

p

.

MB =
e2

q2
[ū (p3) γ

µu (p1)] [ū (p2) Γµ (q)u (p4)] ,

where Γµ (q) is the electromagnetic vertex which
is parameterized in terms of proton form factors
F1,2

(

q2
)

:

Γµ (q) = F1

(

q2
)

γµ +
1

4Mp

(

γµ/q − /qγµ
)

F2

(

q2
)

,

which are normalized as follows:

F1 (0) = 1, F2 (0) = µp,

and are related with the electric (Dirac) and mag-
netic (Sachs) form factors as:

GE = F1 − τF2, GM = F1 + F2. (3)
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Lepton Vertex Corrections

p

p− k

k

p′ − k

p′ Let us consider vertex correction first. It leads to the
modification of the vertex:

−ieγµ → −ieΛµ (p, p
′) , (4)

where Λµ (p, p
′) has the form:

Λµ (p, p
′) = (−ie)2 i

∫

d4k

(2π)
4

γν
(

/p′ − /k +m
)

γµ
(

/p− /k +m
)

γν

((p′ − k)2 −m2) ((p− k)2 −m2) (k2 − λ2)
, (5)

where λ is the photon fictitious mass which is necessary for infra-red divergence
regularization. One can see that after some algebra the numerator of the integral
can be transformed into the following expression:

γν
(

/p
′ − /k +m

)

γµ
(

/p− /k +m
)

γν = 4 (pp′) γµ − 2/p/kγµ − 2γµ/k/p
′ − 2/kγµ/k.
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Lepton Vertex Corrections

p

p− k

k

p′ − k

p′ The first term is ultra-violet finite but has infra-red di-
vergence (when k → 0):

I =

∫

d4k

(k2 − λ2) (k2 − 2 (kp)) (k2 − 2 (kp′))
=

= −iπ2

1
∫

0

dy

1
∫

0

xdx

x2p2y + λ2 (1− x)
= − iπ

2

2

1
∫

0

dy

p2y
ln

(

p2y
λ2

)

∼ ln

(

λ

m

)

,

where py = yp+ (1− y) p′. But we will discuss this later and now consider
ultra-violet divergent part.
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Lepton Vertex Corrections: Ultra-Violet Divergencies

p

p− k

k

p′ − k

p′
The third term is ultra-violet divergent:

Iµν =

∫

d4k kµkν

(k2 − λ2) (k2 − 2 (kp)) (k2 − 2 (kp′))
=

and first it should be regularized. We will do this by
injecting the regularization multiplier with some auxiliary
parameter Λ:

=

∫

d4k kµkν

(k2 − λ2) (k2 − 2 (kp)) (k2 − 2 (kp′))

−Λ2

k2 − Λ2
=

This factor will be eliminated at the end of calculation going to limit Λ → ∞. But
now we can calculate the integrals:

= − iπ
2

2





1
∫

0

dy
pµyp

ν
y

p2y
− gµν



ln

(

Λ

m

)

− 1− 1

2

1
∫

0

dy ln

(

p2y
m2

)







 . (6)
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Lepton Vertex Corrections: Renormalization

j

p

p− k

k

p′ − k

p′

Here the momentum
transferred is q = p− p′.

Thus we have for divergent part of the vertex Λµ (p, p
′):

ΛUV
µ (p, p′) =

α

4π

1
∫

0

dy
/pyγ

µ
/py

p2y
−

− α

4π
γµ

1
∫

0

dy ln

(

p2y
m2

)

+
α

8π
γµ

(

ln

(

Λ

m

)

− 1

)

.

So, in order to get finite physical result we should apply some regularization
scheme. Here we can use the requirement of electric charge normalization, i.e.
that at q2 → 0 the vertex corrections tends to zero:

Λµ (p, p
′)|q→0 = Λµ (p, p) → 0, (7)

so in our calculations we can do the following substitution which ensures this
requirement:

Λµ (p, p
′) → Λ̃µ (p, p

′) = Λµ (p, p
′)− Λµ (p, p) . (8)
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Lepton Vertex Corrections: Renormalization

j

p

p− k

k

p′ − k

p′

q = p− p′

Thus we get that the renormalized vertex can be written
in the form of vertex with form factors:

Λ̃µ (p, p
′) = Λµ (p, p

′)− Λµ (p, p) =

= G1

(

q2
)

γµ +
1

4m

(

γµ/q − /qγµ
)

G2

(

q2
)

=

= − α

2π
(K (p, p′)−K (p, p)) γµ+

+
α

2π



−3 +

(

3− q2

m2

)

1
∫

0

dy
m2

p2y
− 1

2

1
∫

0

dy ln

(

p2y
m2

)



 γµ−

− α

2π





1
∫

0

dy
m2

p2y





1

4m

(

γµ/q − /qγµ
)

, K (p, p′) = (pp′)

1
∫

0

dy ln

(

p2y
λ2

)

.
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Ultra-Violet Divergencies: Renormalization

q

m

We can consider the vacuum excitations in photon propagator in
the similar way. This diagram leads to the following modification
of the photon propagator:

−i gµν
q2

→ −i gµν
q2
(

1 + Π
(

q2,m2
))

→ −i gµν
q2 −Π(q2,m2)

,

where Π
(

q2,m2
)

is the vacuum excitation operator:

Π
(

q2,m2
)

=
2α

π

1
∫

0

dz z (1− z) ln

(

1− q2z (1− z)

m2 − iε

)

=

=
α

3π

{

(

1− 2

x2

)

√

1 + 4/x2 ln

(

√

1 + 4/x2 + 1
√

1 + 4/x2 − 1

)

+
4

x2
− 5

3

}

,

where x2 = −q2/m2. The expression corresponding to the Feynman diagram
diverges quadratically in high–frequency limit, but we already regularized the
expression above with the use of condition that photon should not obtain any
mass as a result of radiative corrections: Π

(

q2 = 0,m2
)

= 0.
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Ultra-Violet Divergencies: Renormalization

q

m

There also known forms in asymptotic regions:

Π
(

q2,m2
)

∣

∣

∣

−q2≪m2

=
α

16π

(−q2
m2

)

,

Π
(

q2,m2
)

∣

∣

∣

−q2≫m2

=
α

π

(

1

3
ln

(−q2
m2

)

− 5

9

)

.

Thus we can take into account the contributions from vacuum excitations (VE)
like:

MV E = MB

∑

i=e,µ,τ

Π
(

q2,m2
i

)

. (9)

But usually one prefers iterate this procedure and sum up all these contributions
in the form:

MB +MV E =
MB

1− ∑

i=e,µ,τ

Π(q2,m2
i )
. (10)
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Real Photon Emission

p

q

p′

p− k

k

p

q

p′ + k

p′

k

Let us now consider the emission of the real photon from lepton
line. In general this process worths for separate consideration
(”hard” photon emission), but we will concentrate on the case
when emitted photon is ”soft”, i.e. its energy is small ω → 0.
This approximation allows to use the semi–classical approach
(the so called ”current approximation”) when the amplitude of
the bremsstrahlung factorizes as follows:

MBrems. = e

(

(ep′)

(kp′)
− (ep)

(kp)

)

MB, (11)

where eµ is the emitted photon polarization vector. And this
factor in braces gives the following multiplier to the cross sec-
tion, which has the sense of the probability of emission of the
photon with energy ω along the direction n = k/ω:

P (k) dk =
α

(2π)
2

(

(ep)

E − (pn)
− (ep′)

E′ − (p′n)

)2
dω

ω
dΩk. (12)
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Real Photon Emission: Infrared Divergencies

p

q

p′

p− k

k

p

q

p′ + k

p′

k

It is seen that this probability of photon emission

P (k)dk =
α

(2π)
2

(

(ep)

E − (pn)
− (ep′)

E′ − (p′n)

)2
dω

ω
dΩk,

shows the typical infrared behavior dω/ω and strongly peaked
angular dependence about the directions of p and p′. The
probability for photon emission into the energy range dω is

ω2dω

∫

P (k) dΩk =
2α

π

[

ln
2
(

E2 − (pp′)
)

m2
− 1

]

dω

ω
.

Thus the probability of photon emission increases logarithmi-
cally with the energy. And the integral probability of photon
emission diverges:

∫

P (k) dk =

ωmax
∫

ωmin

ω2dω

∫

P (k) dΩk =
2α

π
[· · ·] ln ωmax

ωmin
.
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Real Photon Emission: Infrared Divergencies

The essential idea for the understanding of the infrared
divergence problem was first brought out by Bloch and
Nordsieck in their famous paper
[F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937)].
In brief, their idea is:

Individual photons can be emitted with arbitrarily
small energies ω < ωmin and thus there is a
possibility that some photons will escape detection.

The probability that only a finite number of photons
will escape detection is precisely zero.

The observed cross section is very close to the cross
section where all radiative corrections are ignored.

This is the well-known cancellation between the real and virtual infrared

divergences.
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Infrared Divergencies: Yennie–Frautschi–Suura

More detailed and systematic analysis of infrared divergencies was done in the
paper [D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13, 379 (1961)]
where virtual and real photon emission was analyzed in a series of the process and
some general procedure was presented. Let us follow it in a sketch.
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Infrared Divergencies:

Yennie–Frautschi–Suura – Virtual Photons

First they make a statement that infrared contributions goes from the virtual
photon diagrams where photon is emitted and absorbed from external legs. And
the amplitude of one additional virtual photon emission M(1) has the form:

M(1) = αBM(0) + M̃(1), (13)

where M(0) is the amplitude of the hard sub-process with no extra photon
emission and factor B has the common form:

B =
i

(2π)3

∫

d4k

k2 − λ2

(

2p′µ − kµ

2 (p′k)− k2
− 2pµ − kµ

2 (pk)− k2

)2

. (14)

Yu. M. Bystritskiy ( JINR, BLTP, Dubna, Russia ) Introduction to Radiative Corrections October 7, 2013 21 / 44



Infrared Divergencies:

Yennie–Frautschi–Suura – Virtual Photons

Considering the processes with more then one additional photon in the same
approach one obtains the following result:

M(0) = M(0),

M(1) = αBM(0) + M̃(1),

M(2) =
(αB)

2

2
M(0) + αB M̃(1) + M̃(2),

· · ·

M(n) =

n
∑

r=0

(αB)
r

r!
M̃(n−r),

and summing the contributions with any number of virtual photons emitted one
gets the exponentiated form:

M =

∞
∑

n=0

M(n) = exp (αB)

∞
∑

n=0

M̃(n). (15)
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Infrared Divergencies: Yennie–Frautschi–Suura

Now we consider the cross section with the emission of the additional n real
photons with their total energy equal to ǫ:

dσn
dǫ

= exp (2αB)
1

n!

∫ n
∏

m=1

dkm

(

km
2 + λ2

)1/2
δ

(

ǫ−
n
∑

i=1

ωn

)

ρ̃n (p, p
′, k1, · · · , kn) .

And if we take into account the contributions from the emission of all the possible
number of real photons we get:

dσ

dǫ
=

∞
∑

n=0

dσn
dǫ

= exp (2αB)
1

2π

∞
∫

−∞

dy eiyǫ exp
[

2αB̃ +D
]

×

×
{

β̃0 +
∞
∑

n=0

1

n!

∫ n
∏

m=1

dkm

ωm
e−iyωm β̃n (p, p

′, k1, · · · , kn)
}

.
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Infrared Divergencies: Yennie–Frautschi–Suura

Thus the contributions with singular infrared behavior factorizes as:

dσ

dǫ
= exp

(

2α
(

B + B̃
)) dσ̂

dǫ
, (16)

where dσ̂ is the ”cross section” which is independent of the soft photon limit (i.e.
it is finite as λ→ 0) and

B =
i

(2π)
3

∫

d4k

k2 − λ2

(

2p′µ − kµ

2 (p′k)− k2
− 2pµ − kµ

2 (pk)− k2

)2

,

B̃ =
−1

8π2

∫ ′ dk

(k2 + λ2)
1/2

(

p′µ
(p′k)

− pµ
(pk)

)2

.

Yu. M. Bystritskiy ( JINR, BLTP, Dubna, Russia ) Introduction to Radiative Corrections October 7, 2013 24 / 44



Infrared Divergencies: Yennie–Frautschi–Suura

Thus the contributions with singular infrared behavior factorizes as:

dσ

dǫ
= exp

(

2α
(

B + B̃
)) dσ̂

dǫ
, (17)

where dσ̂ is the ”cross section” which is independent of the soft photon limit (i.e.
it is finite as λ→ 0) and

B = − 1

2π

[

ln
2 (pp′)

m2

(

ln
m2

λ2
+

1

2
ln

2 (pp′)

m2
− 1

2

)

− ln
m2

λ2

]

,

B̃ =
1

2π

[

ln
2 (pp′)

m2

(

ln
m2

λ2
+

1

2
ln

2 (pp′)

m2
− ln

EE′

ǫ2

)

− ln
m2

λ2
+ ln

EE′

ǫ2

]

,

and thus the exponent argument is infrared finite:

2α
(

B + B̃
)

= −α
π

(

ln
2 (pp′)

m2
− 1

)

ln
EE′

ǫ2
+

α

2π
ln

2 (pp′)

m2
.
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Collinear Singularity

p−

p+

p− − k

k

p−

−p+

−p+ + k

k

Typical example of collinear singularity can be demon-
strated in electron–positron annihilation. The singularity
appears from the propagator of electron (positron) after
emitting the photon. The denominators of these prop-

agators has the form:

(p− − k)
2 −m2 = −2 (p−k) =

= −2kp

(

m2

p (E + p)
+ (1− cos θ)

)

,

(p+ − k)
2 −m2 = −2 (p+k) =

= −2kp

(

m2

p (E + p)
+ (1 + cos θ)

)

,

where p± = (E, 0, 0,∓p) are the momenta of initial e±

beams and θ is the angle between p− and k.

Yu. M. Bystritskiy ( JINR, BLTP, Dubna, Russia ) Introduction to Radiative Corrections October 7, 2013 26 / 44



Collinear Singularity

p−

p+

p− − k

k

p−

−p+

−p+ + k

k

For example we consider the following integral over photon
angle θ. One can change the variable of integration which
absorbs the singularity and obtain:

1
∫

−1

d cos θ
f (cos θ)

4 (p−k) (p+k)
=

=
1

4 (kp)
2

1
∫

−1

dz
f (z)

[

m2

p(E+p) + (1− z)
] [

m2

p(E+p) + (1 + z)
] =

=
1

4 (kp)
2

1

a
L

1
∫

0

dx f (x) ,

where z ≡ cos θ and (using s = (p+ + p−)
2
= 4E2)

a = 1 +
m2

p (E + p)
, L = ln

(

1 +
2p (E + p)

m2

)

∼ ln
s

m2
.
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Collinear Singularity: Kinoshita–Lee–Nauenberg theorem

Indeed this kind of singularities often appears in the processes where large scale
difference is present. For instance, here, in e+e− annihilation, we have dangerous
terms like:

|M|2 ∼ 1

(p±k)
and

m2

(p±k)
2 which leads to

∫

|M|2 dΓ ∼ ln
s

m2
. (18)

Since quantity |M|2 usually enters some finite observable, like cross sections or
decay widths, there should exist the finite limit at vanishing mass m→ 0.
This means that in total cross section or decay width the terms singular in mass
disappears. This statement was proven in general way long time ago
[T. Kinoshita, J. Math. Phys. 3, 650 (1962); T. D. Lee and M. Nauenberg, Phys.
Rev. 133, B1549 (1964)].
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Collinear Factorization: Quasi-Real Electron Method

Let us consider Quasi-Real Electron Method (see V. N. Baier, V. S. Fadin and
V. A. Khoze, Nucl. Phys. B 65, 381 (1973)) which will allow us to investigate the
useful consequences of collinear singularity. Thus we consider the following
processes

p p− k

k Γ0

p+ k p

kΓ0
k

k − p

p

Γ0

when the electron with large energy E ≫ m emits photon with energy ω along
the direction of it’s momenta (assuming that (E − ω) ≫ m). In this kinematics
the denominator of electron propagator becomes small and if all the others
momenta transferred in the process is large then the cross section factorizes and is
equal to the product of the cross section without emission of the photon and the
probability of photon emission.
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Collinear Factorization: Quasi-Real Electron Method

p+ k p

kΓ0

The amplitude of the process is given by the expression:

M = eū (p) /e
λ /p+ /k +m

2 (pk)
Γ0 (p+ k, ...) , (19)

where eλ is the vector of polarization of emitted photon.
These spinors satisfy the following relations of

completeness:
∑

s=±1

us (p+ k) ūs (p+ k) = Ep+kγ0 − (p+ k) γ +m,

∑

s=±1

vs (p+ k) v̄s (p+ k) = Ep+kγ0 − (p+ k) γ −m,

where Ep+k =

√

(p+ k)2 +m2. Using these relations we can rewrite the lepton

propagator in (19) in the following way:

/p+ /k +m

2 (pk)
=

1

2Ep+k

∑

s=±1

[

us (p+ k) ūs (p+ k)

Ep + ω − Ep+k
+
vs (−p+ k) v̄s (−p+ k)

Ep + ω + Ep+k

]

,

where Ep =
√

p2 +m2.
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Collinear Factorization: Quasi-Real Electron Method

p+ k p

kΓ0

If angle θ between p and k is small (we assume that
|p| ≫ m, |p− k| ≫ m), then denominator of first
term is small:

Ep + ω − Ep+k ≈ ωEp

2 (Ep + ω)

(

m2

E2
p

+ θ2
)

,

Ep + ω + Ep+k ≈ 2 (Ep + ω) ,

Thus amplitude of the process factorizes:

M =
e

2Ep+k

ū (p) /e
λu (p+ k)

Ep + ω − Ep+k
M0 (p+ k, ...) , (20)

where M0 is the amplitude of the process without photon emission in shifter
kinematics:

M0 (p+ k, ...) = ū (p+ k) Γ0 (p+ k, ...) . (21)
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Collinear Factorization: Quasi-Real Electron Method

p+ k p

kΓ0

The square of modulus of the amplitude M from (20)
has the form:

|M|2 = e2 |M0|2
(

E2
p + (Ep + ω)2

ω (Ep + ω) (kp)
− m2

(kp)
2

)

, (22)

where in braces we keep only singular on (kp) terms. This
approximation is valid if other momenta transferred are large (t0 ≫ (kp)). Thus
defining the probability of emission of hard photon with energy ω by the electron
with momentum p as:

dWp (k) =
α

4π

(

E2
p + (Ep + ω)2

Epω (kp)
− m2

(kp)
2

Ep + ω

Ep

)

dk

ω
, (23)

p2

p1
p3

k

p′
we can write the cross section of the process with the emis-
sion of the photon in the factorized form:

dσ =
dσ0
dp′

∣

∣

∣

∣

p′=p3+k

dWp3+k (k) dp3. (24)
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Structure Functions Approach

p2

p1

xp1

Iterating the formulae of Quasi Real Electron Method
and taking into account the virtual corrections we obtain
the Structure Functions Approach:

dσ(s) =

1
∫

0

dxD
(

x,Q2
)

dσ̂ (sx) . (25)

where D(x,Q2) is the Structure Function of the lep-
ton, which means that probability to find the lepton with
momentum xp inside the lepton with momentum p, i.e.
x is the fraction of the initial momentum carried by the
final lepton, and Q2 is the scale of hard subprocess.

This approach (based on the partonic picture of QCD hard processes of DGLAP
equations) was elaborated in a series of the papers of L.N. Lipatov, V.S. Fadin
and E.A. Kuraev (see for example E. A. Kuraev and V. S. Fadin, Sov. J. Nucl.
Phys. 41, 466 (1985)).
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Structure Functions Approach

p2

p1

xp1

The structure functions take into account the corrections
with large logarithms of type ln

(

Q2/m2
)

and satisfy the
Lipatov’s evolution equations (which is similar to DGLAP
equations):

dD
(

x,Q2
)

d lnQ2
=

α

2π

1
∫

x

dz

z
P (1)

(x

z

)

D
(

z,Q2
)

, (26)

where P (x) is the evolution equation kernel, which de-
scribes the elementary act of photon emission and the
explicit form of this kernel is defined from Quasi Real
Electron Method:

P (1) (x) =

(

1 + x2

1− x

)

+

= lim
∆→0

[

1 + x2

1− x
θ (1− x−∆) +

(

2 ln (∆) +
3

2

)

δ (1− x)

]

.
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Structure Functions Approach

Solving the evolution equations one gets the following result for the Structure
Function D

(

x,Q2
)

:

D
(

x,Q2
)

= δ (1− x) +
α

2π

(

ln

(

Q2

m2

)

− 1

)

P (1) (x) +

+
1

2!

( α

2π

)2
(

ln

(

Q2

m2

)

− 1

)2

P (2) (x) + · · · (27)

where P (n) (x) are the kernels of evolution equations of n-th order:

P (1) (x) =

(

1 + x2

1− x

)

+

= lim
∆→0

[

1 + x2

1− x
θ (1− x−∆) +

(

2 ln (∆) +
3

2

)

δ (1− x)

]

,

P (n) (x) =

1
∫

x

dy

y
P (1) (y)P (n−1)

(

x

y

)

.
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Structure Functions Approach:

Kinoshita–Lee–Nauenberg theorem

It is worth to be mentioned that Structure Function Approach satisfies the
requirements of Kinoshita–Lee–Nauenberg theorem. This is easy to see if one
notices the following property of Structure Function D

(

x,Q2
)

:

1
∫

0

dxD
(

x,Q2
)

= 1,

1
∫

0

dxxD
(

x,Q2
)

= 1, (28)

which follows from the corresponding property of evolution kernel:

1
∫

0

dxP (1) (x) = 0. (29)

Thus in total cross section or decay width which is written within the Structure
Function Approach all the dangerous terms with mass singularities like
ln
(

Q2/m2
)

are canceled out.
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Electron–Proton Scattering with Radiative Corrections

We consider the electron–proton scattering as an example of application of
above–mentioned approaches to estimate the radiative corrections. In fact it was
done in a series of well-known papers (here is the most famous ones: L. W. Mo
and Y.-S. Tsai, Rev. Mod. Phys. 41, 205 (1969); L. C. Maximon and J. A. Tjon,
Phys. Rev. C62, 054320 (2000)). These calculations were rather cumbersome
and complicated. We will not discuss them in details. But we present only the
result of calculation from the latter one. The cross section of elastic
electron–proton scattering with radiative corrections in first order of perturbation
theory included is:

dσ = dσ0 (1 + δ) , (30)

where δ is the contribution of total radiative correction which includes

q

m
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e− p Scattering with RC: Maximon–Tjon

q

m

δ =
α

π

{

13

6
ln

(−q2
m2

)

− 28

9
− 1

2
ln2 η + Li2

(

cos2 (θ/2)
)

−

−π
2

6
−
[

ln

(−q2
m2

)

− 1

]

ln

(

4E1E3

(2ηǫ)
2

)}

+

+
2αZ

π

{

− ln η ln

(

−q2x
(2ηǫ)

2

)

+

+Li2

(

1− η

x

)

− Li2

(

1− 1

ηx

)}

+

+
αZ2

π

{

E4

|p4|

(

−1

2
ln2 x− lnx ln

(

ρ2

M2
p

)

+ lnx

)

+

+

(

E4

|p4|
lnx− 1

)

ln

(

M2
p

(2ηǫ)
2

)

+ 1+

+
E4

|p4|

(

−Li2

(

1− 1

x2

)

+ 2 Li2

(

− 1

x

)

+
π2

6

)}

.
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e− p Scattering with RC: Structure Function Approach

q

m

Within Structure Function Approach all the large logarithms
in orders of perturbation theory is summed up with the struc-
ture function D (x) as (see YMB, E. A. Kuraev, and E. Tomasi-

Gustafsson, PRC 75, 015207 (2007)):

dσ

dΩ
=

1
∫

z0

dxD (x)
Φ0 (x)

|1−Π(Q2
x)|2

(

1 +
α

π
K0

)

,

where Φ0 (x) is the Born cross section calculated in the kine-
matics where initial electron has the momentum xp1 instead
of p1. The quantity K0 takes into account term which is not
enhanced with large logarithms:

K0 = Ke +Kp +Kint, z0 =
E3 − ǫ

E3 + ǫ (ρ− 1)
,

Ke = Li2
(

cos2 (θ/2)
)

− 1

2
ln2 η − π2

6
− 1

2
,

Kp = (ln x− β) ln
M2

p

4ǫ2
− 1

2
ln2 x− lnx ln

(

ρ2

M2
p

)

+ · · · .
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e− p Scattering with RC: Structure Function Approach

In Rosenbluth method of form factor mea-
surement one usually plot and fit the so
called ”reduced cross section” σred as a
function of ε which has linear form in Born
approximation:

σred =
ερ (1 + τ)

σM
Φ0 =

= εG2
E

(

Q2
)

+ τ G2
M

(

Q2
)

,

where τ = Q2/
(

4M2
p

)

and Q2 = −q2.
The quantity ε is the polarization degree
of virtual photon:

ε−1 = 1 + 2 (1 + τ) tan2 (θ/2) .

dσ

dΩ
=

1
∫

z0

dxD (x)
Φ0 (x)

|1−Π(Q2
x)|2

(

1 +
α

π
K0

)

.
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e− p Scattering with RC: Structure Function Approach

In Polarization Transfer method of form
factor measurement one measures the ra-
tio of two polarized cross sections:

ΦT = CT

(

Q2, ε
)

GE

(

Q2
)

GM

(

Q2
)

,

ΦL = CL

(

Q2, ε
)

G2
M

(

Q2
)

,

where CT,L

(

Q2, ε
)

is some kinematical
coefficients. Thus the ratio of this cross
sections gives the ratio of form factors:

R
(

Q2
)

=
µpGE

(

Q2
)

GM (Q2)
∼ ΦT

ΦL
.

A. I. Akhiezer and M. .P. Rekalo,
Sov. Phys. Dokl. 13, 572 (1968)

dσT,L

dΩ
=

1
∫

z0

dxD (x)
ΦT,L (x)

|1−Π(Q2
x)|2

(

1 +
α

π
KT,L

)

.
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2γ Contribution

Two photon contribution is of great importance at the moment
since there is an argument that this contribution can be the rea-
son of inconsistency in the measurement of electromagnetic form
factors of the proton.

The well known estimation was done in
Y.-S. Tsai, Phys.Rev. 122, 1898 (1961) using the soft–photon
approximation which gave the following result:

M2γ =
αZ

2π
[K (p2, p3) +K (p4, p1)−K (p2,−p1)−K (p4,−p3)]MB,

where K (pi, pj) is the function already used above:

K (pi, pj) =
2 (pipj)

−iπ2

∫

d4k

(k2 − λ2) (k2 − 2 (kpi)) (k2 − 2 (kpj))
.
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2γ Contribution

Another estimation was done in paper L. C. Maximon and J. A.
Tjon, Phys. Rev. C62, 054320 (2000) where more accurate cal-
culation of the integrals were performed (but still in soft–photon
approximation). The result was:

M2γ =
αZ

π

[

E3

|p3|
ln

(

E3 + |p3|
m

)

− E1

|p1|
ln

(

E1 + |p1|
m

)]

ln

(−q2
λ2

)

MB.

But both these estimations lacks for contributions from the hard photon exchange
kinematical region. This contribution is finite but cannot be evaluated in

model–independent way at the moment.
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Conclusions

1 Radiative corrections are important ingredient of any precise measurement.

2 The method of Structure Functions is simple and convenient method for
estimation of radiative corrections in leading logarithmical approximation.

3 Two–photon contribution and hard photon emission in electron–proton
scattering cannot be evaluated in a model independent way as they require
adequate description of excited proton states.

4 Modern experimental setups (large acceptance detectors and spectrometers,
coincidence measurements, high resolution, etc) need precise modeling of
radiative corrections contributions, leading to Monte–Carlo generators with
radiative corrections implemented.
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