

Eric CONTE, Benjamin FUKS

GDR Terascale @ Annecy 28-30 October 2013

Overview of MadAnalysis 5 v1.1.9

The normal mode and its metalanguage

Fast-simulation packages

Summary & perspectives

Starting points of the project:

Several levels of sophistication for phenomenological analyses

A unique framework : MadAnalysis 5

E. Conte

E. Conte

MadAnalysis 5 - status and news

slide 4

Requirements:

Mandatory	Optional
Python 2.6 or a more recent version	zlib
(but not the 3.X series)	Latex / PDFLatex
GNU GCC compiler	FastJet 3.0 or a more recent version
ROOT 5.27 or a more recent version	Delphes 3.0

Where MadAnalysis can be downloaded ?

- From the official website https://launchpad.net/madanalysis5 (new address)
- From MadGraph 5 interface (available soon)

Validation suite:

- Series of automated tests targeting to check all the functionalities of the program. Last ~ 3 hours.
- Launched for each compilation configuration of the kernel.
- One bug report \rightarrow creation of a dedicated automated test.

Documentation:

- Manual published in January 2013: Comput. Phys. Commun. 184 (2013) 222
- First tutorials are available on the website https://madanalysis.irmp.ucl.ac.be/wiki/tutorials

ightarrow Firsts steps with the Expert Mode

First start of MadAnalysis 5:

• Execution

Parton level	Hadron level	Reconstructed objects level
bin/ma5 or bin/ma5 –P	bin/ma5 –H	bin/ma5 -R

- Initial sequence:
 - Step 1: Testing all dependencies.
 - Step 2: Compiling (if necessary) the C++ library.
 - Step 3: Importing the list of particles and multiparticles (from MadGraph if this program is found on your system).

Defining new particles and multiparticles

- Particles are defined by labels, which could point to one or several PDG-id.
- SM and MSSM labels are automatically loaded at the starting of MadAnalysis.
- The user can define his own labels :

ma5> define mu = mu+ mu-

• All labels defined in a UFO model can be loaded too.

Importing datasets

- For MadAnalysis, a **dataset** is a collection of samples which will be merged.
- All sample files are stored in a dataset.

ma5> import tt*.lhe

ma5>	import	tt*.lhe	as	ttbar
ma5>	import	Wj*.lhe	as	Wjets

• Possibility to tag datasets as signal or background.

Defining an analysis: plots and/or cuts

- Histograms
 - Observable can be related to the event or the properties of a particle
 - Plethora of observables: N, E, ET, M, MT, P, PT, PX, PY, PZ, THETA, ETA, ..., ALPHAT
 - Combining particles

ma5> plot MET
ma5> plot PT(mu)

ma5> plot M(mu+ mu-)

• Cuts : selecting / rejecting events

• Cuts : selecting / rejecting a particle or a combination

ma5>	select	(mı	1)	ΡT	> 50)		
ma5>	select	80	<	М	(mu+	mu-)	<	100

Institut Pluridisciplinaire Hubert CUREN STRUSSOURC

Defining an analysis: plots and/or cuts

Several options or syntaxes allow to extend the potential of MadAnalysis. Some examples:

- By default, a combination is interpreted as the vector sum of momenta. This interpretation can be changed by adding a prefix to the observable label. For instance : vPT, sPT, dsPT, dvPT, rPT
- List of observables specific to the reconstructed object level : ISOL, HE_EE, NTRACKS, ...
- Selecting a particle according to its rank in energy (or to other observables)

ma5> plot PT(mu+[1])

• Selecting a particle according to its history (requirements on mother, grand-mother ...)

ma5> plot PT(mu+ $< w+ < t\sim$)

Launching the analysis:

This can be done by the command submit

- Creating a working directory (with a default name if no name is specified)
- Compiling the C++ job
- Launching the analysis over the different samples contained in the datasets

If you modify, after the submission, the analysis or the layout of the plots,

the results can be updated in an optimized way by the command **resubmit**.

Institut Pluridisciplinaire STRASBOURG

Opening a generated report:

The command **open** displays the HTML report of the last job created.

Reports in PDF and DVI format are also available.

Apali	D 5	MadAnalysis 5 report	
Please v	isit us.	Created by econte on 05 November 2012, 21:29:45	
PDF version of this report		Setup	<u></u>
 Download here 	Command histo		
Setup	ma5>define mu - m	-y	
Command historyConfiguration	ma5>import sample ma5>import sample ma5>import sample	es/ttbar_sl_1.lhe.gz es/ttbar_sl_2.lhe.gz es/ttbar_fh.lhe.gz	
Datasets	ma5>import sample	es/zz.lhe.gz	
 defaultset 	ma5>ma5>plot PT(m ma5>ma5>reject ME	u) 20 0 100 T > 100	
Histos and cuts	ma5>ma5>reject (m ma5>ma5>plot M(mu	u) PT < 20 H mu-) 20 0 100	
 Histogram 1 Histogram 2 Cut 1 Cut 2 Histogram 3 	ma5>ma5>submit ma5>plot MET ma5>plot PT(mu) 2 ma5>reject MET > ma5>reject (mu) P ma5>plot M(mu+ mu ma5>submit	20 0 100 100 T < 20 I-) 20 0 100	

MadAnalysis 5 = multi-purpose interface

External static or shared libraries are linked to the built executable file.

Fast-simulation

How to go from hadronic events to reconstructed events ?

Jet-clustering and identification algorithms + efficiencies on (mis)identification

• Selecting the fast-simulation package:

ma5>	set	main.fastsim.package	=		
delphe	es	fastjet		none	

Fast-simulation

(Almost) ideal detector simulation based on FastJet

• Selecting the fast-simulation package called: fastjet

ma5> set main.fastsim.package = fastjet

Thanks to A. Alloul for validation

- Adopting a fast-simulation package \rightarrow new options:
 - Large selection of jet clustering algorithms

ma5>	set	main.fastsim.algorithm	=		
antik	t	cdfjetclu	genkt	kt	siscone
cambr	idge	cdfmidpoint	gridjet	none	

• algorithm & object-identification parameters. For instance:

ma5>	set	main.fastsim.algorithm = antikt
ma5>	set	main.fastsim.ptmin = 5
ma5>	set	main.fastsim.radius = 0.5
— .		
ma5>	set	main.fastsim.exclusive = true
ma5>	set	<pre>main.fastsim.bjet_id.efficiency = 0.6</pre>
ma5>	set	<pre>main.fastsim.bjet_id.misid_cjet = 0.</pre>

Fast-simulation

Realistic detector simulation based on Delphes 3

• Selecting the fast-simulation package called: delphes

ma5> set main.fastsim.package = delphes

- Adopting a fast-simulation package \rightarrow new options:
 - Choice of the default Delphes cards

ma5> set	main.fastsi	.m.detector	=
	CMS	atlas	

• Pile-up input:

ma5> set main.fastsim.pileup = "MinBias.pileup"

• Once the analysis is submitted, MadAnalysis 5 invites the user to edit the configuration card with your favorite text editor (set the EDITOR shell variable).

ma5> Would you like to edit the configuration card used by Delphes ? yes/no [default = no]

• Delphes fast-simulation is launched event-by-event. No intermediate file is produced.

Summary and perspectives

- MadAnalysis 5 = a unique framework with two ways to use it:
 - Normal mode: python interface with intuitive commands.
 - **Expert mode:** requiring programming skills (C++, ROOT).
- Relevant features of MadAnalysis 5 design:
 - **User-friendly** → professional analyses in a simple way.
 - Flexible: no limit on the analysis complexity.
 - **Easy** to maintain and to validate.
- Interface to physics-relevant tools:
 - **Fast-Jet** for clustering and for generating ME/PS merging validation.
 - **Delphes 3** for fast-simulation.
 - Expected soon: shower programs.

ma5team@iphc.cnrs.fr https://launchpad.net/madanalysis5 Comput. Phys. Commun. 184 (2013) 222