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BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑
O A ≡ ( b̄γL

α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR
α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

D. Guadagnoli, B
s
 → µµ as an EWPT



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑
O A ≡ ( b̄γL

α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR
α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑

The very “delicate” structure of the SM prediction 
is easily spoiled beyond the SM.

☑

●

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT

Why is this actually plausible?



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑

The very “delicate” structure of the SM prediction 
is easily spoiled beyond the SM.

☑

Observation: the B
s
 → µµ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

Credits: Gino Isidori

●

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT

Why is this actually plausible?



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑

The very “delicate” structure of the SM prediction 
is easily spoiled beyond the SM.

☑

AB s→μμ ∝ GF ⋅ αe.m. ⋅ Y (M t
2/M W

2 )

Observation: the B
s
 → µµ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

Credits: Gino Isidori

with Y (
M t

2

M W
2 ) ∼

M t
2

M W
2 because of GIM

●

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT

Why is this actually plausible?



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑

The very “delicate” structure of the SM prediction 
is easily spoiled beyond the SM.

☑

AB s→μμ ∝ GF ⋅ αe.m. ⋅ Y (M t
2/M W

2 )

Observation: the B
s
 → µµ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

AB s→μμ ∝ 1

v2
⋅ g 2 ⋅

M t
2

M W
2

Credits: Gino Isidori

with Y (
M t

2

M W
2 ) ∼

M t
2

M W
2 because of GIM

Hence the relevant 
proportionality is: ∝

yt
2

v2

●

●

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT

Why is this actually plausible?



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑

The very “delicate” structure of the SM prediction 
is easily spoiled beyond the SM.

☑

AB s→μμ ∝ GF ⋅ αe.m. ⋅ Y (M t
2/M W

2 )

Observation: the B
s
 → µµ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

So this process is a genuine probe 
of Yukawa interactions

i.e. of the scalar-fermion sector

AB s→μμ ∝ 1

v2
⋅ g 2 ⋅

M t
2

M W
2

Credits: Gino Isidori

with Y (
M t

2

M W
2 ) ∼

M t
2

M W
2 because of GIM

Hence the relevant 
proportionality is:

the g2 dependence 
cancels out

∝
yt

2

v2

●

●

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT

Why is this actually plausible?



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑

The very “delicate” structure of the SM prediction 
is easily spoiled beyond the SM.

☑

AB s→μμ ∝ GF ⋅ αe.m. ⋅ Y (M t
2/M W

2 )

Observation: the B
s
 → µµ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

So this process is a genuine probe 
of Yukawa interactions

i.e. of the scalar-fermion sector

AB s→μμ ∝ 1

v2
⋅ g 2 ⋅

M t
2

M W
2

Credits: Gino Isidori

with Y (
M t

2

M W
2 ) ∼

M t
2

M W
2 because of GIM

Hence the relevant 
proportionality is:

the g2 dependence 
cancels out

∝
yt

2

v2

One famous example: 
the MSSM with large tanß

b̄R

sL

h0 , H 0 , A0

μ–

μ+

tan 2β tanβ
BR [Bs→μ+μ– ]∝ At

2 tan6β
M A

4

Enhancement going as:

Effectively tree-level diagrams:

●

●

O A ≡ ( b̄γL
α s ) ( μ̄ γα γ5μ ) O ' A ≡ ( b̄γR

α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator

D. Guadagnoli, B
s
 → µµ as an EWPT

Why is this actually plausible?



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT

☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT

☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )

∼
v2  Z

µ



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT

☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )

flavor structure
∼
v2  Z

µ



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT

☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )

flavor structure
∼

Once the EFT flavor structure (the X
ij
 couplings) is specified,  

flavor-viol. and flavor-cons. effects are correlated

MFV

Partial 
Compositeness

●

●

☑

This can be done within general and motivated frameworks 
such as:

v2  Z
µ



  

  BR[B
s
 → µµ] as an EW precision test

☑ B
s
 → µµ is more than ‘just’ a probe of new scalars mediating FCNCs

Consider the Z-d
i
-d

j
 coupling:

Z

d j

d i

Flavor-diag: i = j (= 3)

Affects LEP-measured 
Z → b b observables:  R

b
,  A

b
,  Ab

FB

Flavor-off-diag: i ≠ j

Affects Z-penguin-driven FCNCs,
in particular B

s
 → µµ

B
s

µ–

µ+

Z

b

b



DG, Isidori, PLB 13

D. Guadagnoli, B
s
 → µµ as an EWPT

☑ Shifts in Zdd couplings can be implemented as
 contributions from effective operators 
(→ minimal model dep.)

The only operators relevant to the problem are 
of the form:

Operators  ∼ (d i γμ X ij d j ) (H † DμH )

flavor structure
∼

Once the EFT flavor structure (the X
ij
 couplings) is specified,  

flavor-viol. and flavor-cons. effects are correlated

MFV

Partial 
Compositeness

●

●

☑

This can be done within general and motivated frameworks 
such as:

In either case, FV and FC couplings
 will be proportional to 

two universal shifts:
δg

L
  &  δg

Rv2  Z
µ



  

☑ MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry 
are the SM Yukawa couplings

 Fixing the couplings.  Case 1: MFV

D. Guadagnoli, B
s
 → µµ as an EWPT



  

☑ MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry 
are the SM Yukawa couplings

 Fixing the couplings.  Case 1: MFV

This statement fixes the flavor structure of new operators.

X i j =O (1)×(Y u Y u
†)ij

☑

Example: operators with the bilinear Q L
i γμ X i j Q L

j

D. Guadagnoli, B
s
 → µµ as an EWPT



  

☑ MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry 
are the SM Yukawa couplings

 Fixing the couplings.  Case 1: MFV

This statement fixes the flavor structure of new operators.

X i j =O (1)×(Y u Y u
†)ij

☑

Example: operators with the bilinear Q L
i γμ X i j Q L

j

☑

E.g., in the basis where                           and                   one has:Y u=V † Ŷ u Y d=Ŷ d
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The defining property of (fermion) Partial Compositeness is as follows:

“At a cutoff scale Λ, the SM fermions f
i
 couple linearly to operators O

i
  of a confining sector”

= ϵi f i Oiinteractions the ϵ
i
 measure the degree of compositeness of 

fermion f
i

It is evident that the relevant low-energy d.o.f. are not  f
i
 , but rather ϵ

i fi

Building our EFT with ϵ
i fi

  the flavor structure is fixed – apart from O(1) factors

Back to the main point:

●

●
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 Fixing the couplings.  Case 2: Partial Compositeness
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Another way to arrive at the same answer is to start with the following picture:

Yukawa interactions are O(1)
patternless matrices

kinetic terms for fermions are hierarchical
(in a non-canonical wave-function normalization)

but

Hierarchical kin. terms can arise from non-trivial profiles of fermion wave-functions  
in QFT with extra-dims

Hierarchies are then transmitted to the Yukawa interactions 
once kin. terms are made canonical

●

●

See e.g.:
Davidson, Isidori, Uhlig, PLB 08
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Flavor structure of the RH operator O1R
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☑ One can then compare the limits on δg
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Conclusions

Looking forward to a deviation.•
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