## $B_{s} \rightarrow \mu \mu$

# as an electroweak precision test 

Diego Guadagnoli<br>LAPTh Annecy

## The $B_{s} \rightarrow \mu \mu$ decay within the $S M$ : structure

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2} / M_{W}^{2}\right)
$$

## The $B_{s} \rightarrow \mu \mu$ decay within the $S M$ : structure

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2} / M_{W}^{2}\right)
$$

couplings: gauge and CKM

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times \underbrace{\left(\frac{G_{F}^{2} \alpha_{\text {e.m. }}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|}_{\text {couplings: gauge and CKM }} \cdot \underbrace{f_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2} / M_{W}^{2}\right)}_{B_{B_{s}}^{2}}
$$

## The $B_{s} \rightarrow \mu \mu$ decay within the $S M$ : structure

$\square B R\left[B_{s} \rightarrow \mu \mu\right]$ has the following structure


## The $B_{s} \rightarrow \mu \mu$ decay within the $S M$ : structure

V $B R\left[B_{s} \rightarrow \mu \mu\right]$ has the following structure


## The $B_{s} \rightarrow \mu \mu$ decay within the SM : structure

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure


Recall: the final state is purely leptonic
hadronic matrix element


The only non-null matrix elem' is:

$$
\langle 0| \bar{b} \gamma^{\alpha} \gamma_{5} s\left|B_{s}(p)\right\rangle=-i f_{B_{s}} p^{\alpha}
$$

hadronic $\quad$ Recall: the final state is purely leptonic
$\square \mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

( $\sqrt{ } \mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure


- Easy to understand: = take the B momentum $p$
= contract $p$ with the lepton current, using $p=p\left(\mu^{+}\right)+p\left(\mu^{-}\right)$
$=$ use e.o.m. for $\mu^{+}$and $\mu^{-}$
( $\quad \mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

- Easy to understand: = take the B momentum $p$
- contract $p$ with the lepton current, using $p=p\left(\mu^{+}\right)+p\left(\mu^{-}\right)$
= use e.o.m. for $\mu^{+}$and $\mu^{-}$
chiral suppression
- Masses' \& couplings' dependence of the $B R=$



## $B_{s} \rightarrow \mu \mu$ <br> and new physics

## BR $\left[B_{s} \rightarrow \mu^{+} \mu\right]$ beyond the SM

Model-independent approach: effective operators

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{aligned}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu)
\end{aligned} r O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu), ~\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) \quad O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
$$

## BR $\left[B_{s} \rightarrow \mu^{+} \mu\right]$ beyond the SM

】 Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

## SM operator

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} & \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} & \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

## $\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators,
but their matrix elements vanish for this process.)

## SM operator

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Why is this actually plausible?


## $\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

Model-independent approach: effective operators

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

## SM operator

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Why is this actually plausible?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

## $\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

Model-independent approach: effective operators

## SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} & \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} & \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Why is this actually plausible?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

## $\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

Model-independent approach: effective operators

## SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} & \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} & \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Why is this actually plausible?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:

$$
A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} \cdot g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}} \propto \frac{y_{t}^{2}}{v^{2}}
$$

## $\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

Model-independent approach: effective operators

## SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{aligned}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} & \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{aligned}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Why is this actually plausible?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:

$$
\begin{aligned}
& A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} \propto g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}} \propto \frac{y_{t}^{2}}{v^{2}} \\
& \begin{array}{c}
\text { the } \mathbf{g}^{2} \text { dependence } \\
\text { cancels out }
\end{array}
\end{aligned}
$$

So this process is a genuine probe of Yukawa interactions i.e. of the scalar-fermion sector

## $\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

Model-independent approach: effective operators

## SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Why is this actually plausible?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{\text {e.m. }} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:


So this process is a genuine probe of Yukawa interactions i.e. of the scalar-fermion sector

One famous example: the MSSM with large tanß


Effectively tree-level diagrams:
Enhancement going as:
$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \propto A_{t}^{2} \frac{\tan ^{6} \beta}{M_{A}^{4}}$
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test

( $B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:


## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test

$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:


## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test

$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test


$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:




■ Shifts in Zdd couplings can be implemented as contributions from effective operators
( $\rightarrow$ minimal model dep.)
The only operators relevant to the problem are of the form:

Operators $\sim\left(\begin{array}{llll}\bar{d}_{i} & \gamma^{u} & X^{i j} & d_{j}\end{array}\right)\left(H^{\dagger} D_{\mu} H\right)$

## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test


$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:


$\left\{\begin{array}{l}\text { Flavor-diag: } i=j(=3) \\ \text { Affects } L E P \text {-measured } \\ Z \rightarrow b \text { observables: } R_{b}, A_{b}, A_{F B}^{b}\end{array}\right.$
$\left\{\begin{array}{l}\text { Flavor-off-diag: } i \neq j \\ \text { Affects Z-penguin-driven FCNCs, } \\ \text { in particular } B_{s} \rightarrow \mu \mu\end{array}\right.$

( Shifts in Zdd couplings can be implemented as contributions from effective operators
( $\rightarrow$ minimal model dep.)
The only operators relevant to the problem are of the form:


## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test


$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:
 3


Flavor-off-diag: $i \neq j$
Affects Z-penguin-driven FCNCs, in particular $B_{s} \rightarrow \mu \mu$

( Shifts in Zdd couplings can be implemented as contributions from effective operators
( $\rightarrow$ minimal model dep.)
The only operators relevant to the problem are of the form:


## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test


$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:
 5

Flavor-diag: $i=j(=3)$
Affects LEP-measured $Z \rightarrow b \bar{b}$ observables: $R_{b}, A_{b}, A_{F B}^{b}$


Flavor-off-diag: $i \neq j$
Affects Z-penguin-driven FCNCs, in particular $B_{s} \rightarrow \mu \mu$

( $\sqrt{\text { Shifts in Zdd couplings can be implemented as }}$ contributions from effective operators ( $\rightarrow$ minimal model dep.)

The only operators relevant to the problem are of the form:

Operators $\left.\sim\left(\begin{array}{ll}\bar{d}_{i} & \gamma^{\mu} \\ \text { flavor structure }\end{array} X^{i j}\right) d_{j}\right) \underbrace{\left(V^{2} Z_{\mu}\right.}_{v^{2}} \begin{gathered}\left.H_{\mu}^{\dagger} H\right) \\ v^{2}\end{gathered}$

V Once the EFT flavor structure (the $X_{i j}$ couplings) is specified, flavor-viol. and flavor-cons. effects are correlated

This can be done within general and motivated frameworks such as:

- MFV
- Partial

Compositeness

## $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EW precision test


$\square \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:
 3

Flavor-diag: $i=j(=3)$
Affects LEP-measured $Z \rightarrow b \bar{b}$ observables: $R_{b}, A_{b}, A_{F B}^{b}$


## Flavor-off-diag: $i \neq j$

Affects Z-penguin-driven FCNCs, in particular $B_{s} \rightarrow \mu \mu$


【 Shifts in Zdd couplings can be implemented as contributions from effective operators ( $\rightarrow$ minimal model dep.)

The only operators relevant to the problem are of the form:

Operators $\sim\left(\bar{d}_{i} \gamma^{\mu} X_{\text {flavor structure }}^{i j} d_{j}\right) \underbrace{v^{2} Z_{\mu}}_{\left.\imath^{2} H^{2} D_{\mu} H\right)}$
$\square$ Once the EFT flavor structure (the $X_{i j}$ couplings) is specified, flavor-viol. and flavor-cons. effects are correlated

This can be done within general and motivated frameworks such as:

- MFV
- Partial

Compositeness

In either case, FV and FC couplings will be proportional to two universal shifts:
$\delta g_{L} \& \delta g_{R}$
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## Fixing the couplings. Case 1: MFV

$\square$ MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## Fixing the couplings. Case 1: MFV

V MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings

- This statement fixes the flavor structure of new operators.

Example: operators with the bilinear $\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}$

## Fixing the couplings. Case 1 : MFV

V MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings

- This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j}
$$


$X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{*}\right)_{i j}$
$\square$ This fixes the flavor structure of the $\mathrm{Z} \overline{\mathrm{d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has:

$$
\delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}
$$

## Fixing the couplings. Case 1: MFV

V MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
( This statement fixes the flavor structure of new operators.
Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j}
$$



$$
X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dot{\psi}}\right)_{i j}
$$

च This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has: $\quad \delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}$


Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

$$
\delta g_{L}^{32}=\frac{V_{t b}^{*} V_{t s}}{\left|V_{t b}\right|^{2}} \delta g_{L}
$$

## Fixing the couplings. Case 1: MFV

( MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings

■ This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j}
$$


$X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}$

【 This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has:

$$
\delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}
$$

Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## Fixing the couplings. Case 1: MFV

( MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings

【 This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j}
$$


$X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}$
, This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has:

$$
\delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}
$$

Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

Fixing the couplings. Case 2: Partial Compositeness
( Main point:
As in the MFV example, we need to organize EFT operators according to their flavor suppression.

Fixing the couplings. Case 2: Partial Compositeness

## ■ Main point:

As in the MFV example, we need to organize EFT operators according to their flavor suppression.

The defining property of (fermion) Partial Compositeness is as follows:
"At a cutoff scale $\wedge$, the SM fermions $f_{i}$ couple linearly to operators $O_{i}$ of a confining sector"

$$
\text { interactions }=\epsilon_{i} f_{i} O_{i}
$$

Fixing the couplings. Case 2: Partial Compositeness

## ■ Main point:

As in the MFV example, we need to organize EFT operators according to their flavor suppression.

The defining property of (fermion) Partial Compositeness is as follows:
"At a cutoff scale $\wedge$, the SM fermions $f_{i}$ couple linearly to operators $O_{i}$ of a confining sector"

$$
\text { interactions }=\Theta_{i} f_{i} O_{i}
$$

the $\epsilon_{i}$ measure the degree of compositeness of fermion $f_{i}$

Fixing the couplings. Case 2: Partial Compositeness

## ■ Main point:

As in the MFV example, we need to organize EFT operators according to their flavor suppression.

The defining property of (fermion) Partial Compositeness is as follows:
"At a cutoff scale $\wedge$, the SM fermions $f_{i}$ couple linearly to operators $O_{i}$ of a confining sector"

$$
\text { interactions }=\epsilon_{i} f_{i} O_{i} \quad\left\{\begin{array}{l}
\text { the } \epsilon_{i} \text { measure the degree of compositeness of } \\
\text { fermion } f_{i}
\end{array}\right.
$$

## Back to the main point:

- It is evident that the relevant low-energy d.o.f. are not $f_{i}$, but rather $\epsilon_{i} f_{i}$
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

Fixing the couplings. Case 2: Partial Compositeness
च Main point:
As in the MFV example, we need to organize EFT operators according to their flavor suppression.

The defining property of (fermion) Partial Compositeness is as follows:
"At a cutoff scale $\Lambda$, the SM fermions $f_{i}$ couple linearly to operators $O_{i}$ of a confining sector"

$$
\text { interactions }=\epsilon_{i} f_{i} O_{i}
$$

the $\epsilon_{i}$ measure the degree of compositeness of fermion $f_{i}$

## Back to the main point:

- It is evident that the relevant low-energy d.o.f. are not $f_{i}$, but rather $\epsilon_{i} f_{i}$
- Building our EFT with $\epsilon_{i} f_{i}$ the flavor structure is fixed - apart from $\mathrm{O}(1)$ factors

Fixing the couplings. Case 2: Partial Compositeness
$\sqrt{\square}$ How are the $\epsilon_{i}$ related to $Y_{u}$ and $Y_{d}$ ?

## Fixing the couplings. Case 2: Partial Compositeness

$\sqrt{\square}$ How are the $\epsilon_{i}$ related to $Y_{u}$ and $Y_{d}$ ?

One way to guess the answer: integrate out $O_{i}$ in the interactions $\epsilon_{i} f_{i} O_{i}$

The answer would be: $\quad\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}$

## Fixing the couplings. Case 2: Partial Compositeness

V. How are the $\epsilon_{i}$ related to $Y_{u}$ and $Y_{d}$ ?

One way to guess the answer: integrate out $O_{i}$ in the interactions $\epsilon_{i} f_{i} O_{i}$

The answer would be: $\quad\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}$

Another way to arrive at the same answer is to start with the following picture:


Yukawa interactions are $\mathrm{O}(1)$ but
kinetic terms for fermions are hierarchical (in a non-canonical wave-function normalization)
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## Fixing the couplings. Case 2: Partial Compositeness



One way to guess the answer: integrate out $O_{i}$ in the interactions $\epsilon_{i} f_{i} O_{i}$

The answer would be:

$$
\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}
$$

Another way to arrive at the same answer is to start with the following picture:


Yukawa interactions are O(1) but
kinetic terms for fermions are hierarchical (in a non-canonical wave-function normalization)

- Hierarchical kin. terms can arise from non-trivial profiles of fermion wave-functions in QFT with extra-dims


## Fixing the couplings. Case 2: Partial Compositeness

$\square$ How are the $\epsilon_{i}$ related to $Y_{u}$ and $Y_{d}$ ?

One way to guess the answer: integrate out $O_{i}$ in the interactions $\epsilon_{i} f_{i} O_{i}$

The answer would be:

$$
\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}
$$

Another way to arrive at the same answer is to start with the following picture:


Yukawa interactions are O(1) but
kinetic terms for fermions are hierarchical patternless matrices (in a non-canonical wave-function normalization)

- Hierarchical kin. terms can arise from non-trivial profiles of fermion wave-functions in QFT with extra-dims
- Hierarchies are then transmitted to the Yukawa interactions once kin. terms are made canonical

Fixing the couplings. Case 2: Partial Compositeness

Example
Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

Fixing the couplings. Case 2: Partial Compositeness

Example
Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

- Again, recall: $\quad\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}$


## Fixing the couplings. Case 2: Partial Compositeness

Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

- Again, recall: $\quad\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}$
- The flavor structure of the above-written operator needs to scale as

$$
\propto \epsilon_{d}^{(3)} \epsilon_{d}^{(2)}=\frac{\epsilon_{Q}^{(3)} \epsilon_{d}^{(3)} \epsilon_{Q}^{(2)} \epsilon_{d}^{(2)}}{\epsilon_{Q}^{(3)} \epsilon_{Q}^{(2)}} \propto \frac{m_{b} m_{s}}{\left|V_{t b}\right| V_{t s} \mid}
$$

## Fixing the couplings. Case 2: Partial Compositeness

Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

- Again, recall: $\quad\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}$
- The flavor structure of the above-written operator needs to scale as

$$
\propto \epsilon_{d}^{(3)} \epsilon_{d}^{(2)}=\frac{\epsilon_{Q}^{(3)} \epsilon_{d}^{(3)} \epsilon_{Q}^{(2)} \epsilon_{d}^{(2)}}{\epsilon_{Q}^{(3)} \epsilon_{Q}^{(2)}} \propto \frac{m_{b} m_{s}}{\left|V_{t b}\right|\left|V_{t s}\right|} \quad \square \quad \delta g_{R}^{32}=\frac{m_{b} m_{s}}{\left|V_{t b}\right|\left|V_{t s}\right|} \frac{\left|V_{t b}\right|^{2}}{m_{b}^{2}} \delta g_{R}
$$

Fixing the couplings. Case 2: Partial Compositeness

Example
Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{u} s_{R}\right) H^{\dagger} D_{\mu} H$

- Again, recall: $\quad\left(Y_{u, d}\right)_{i j} \propto \epsilon_{Q}^{(i)} \epsilon_{u, d}^{(j)}$
- The flavor structure of the above-written operator needs to scale as

$$
\propto \epsilon_{d}^{(3)} \epsilon_{d}^{(2)}=\frac{\epsilon_{Q}^{(3)} \epsilon_{d}^{(3)} \epsilon_{Q}^{(2)} \epsilon_{d}^{(2)}}{\epsilon_{Q}^{(3)} \epsilon_{Q}^{(2)}} \propto \frac{m_{b} m_{s}}{\left|V_{t b}\right|\left|V_{t s}\right|} \quad \square \delta g_{R}^{32}=\frac{m_{b} m_{s}}{\left|V_{t b}\right|\left|V_{t s}\right|} \frac{\left|V_{t b}\right|^{2}}{m_{b}^{2}} \delta g_{R}
$$

## $B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results

$\square$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## $B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results

$\square$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## $B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results

$\square$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## $B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results

$\square$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$


## $B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results


$\square$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$


| with present |
| :--- | :--- |
| $\mathbf{B}_{\mathrm{s}} \rightarrow \boldsymbol{\mu} \exp$ error |$\left|\delta g_{L}\right|^{\mathrm{MFV} \text { or PC }}<2.3 \times 10^{-3} \quad\left|\delta g_{R}\right|^{\mathrm{PC}}<1.6 \times 10^{-4}$

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## $B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results


$\square$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$


D. Guadagnoli, $B_{s} \rightarrow \mu \mu$ as an EWPT

## Conclusions

- Looking forward to a deviation.


