Higgs boson(s) in the NMSSM

U. Ellwanger, LPT Orsay

Supersymmetry had a bad press recently:

— No signs for squarks/gluino/charginos/neutralinos... at the LHC

— Conflict (?) between "naturalness" and the Higgs mass of $\sim 125~\text{GeV}$

Still: No convincing alternatives solving the hierarchy problem, including dark matter, Grand Unification... (the "goodies" of supersymmetry)

Moreover: Supersymmetric extensions of the Standard Model are not unique!

The minimal extension (MSSM) has its shortcomings (see below),

many constraints are MSSM specific; notably those from the Higgs mass of ~ 125 GeV! Why?

The quartic Higgs coupling

In the Standard Model, the "mexican hat" potential of the Higgs field $V(H) = -m^2 |H|^2 + \lambda^2 |H|^4$ allows to express the physical Higgs mass M_h in terms of the known vacuum expectation value v (given by the Z/W masses) and λ :

$$M_h^2 = 2\lambda^2 v^2$$

$$\rightarrow$$
 Larger M_h corresponds to larger λ

 \rightarrow If we would have known the coupling $\lambda,$ we could have predicted the Higgs mass M_h

MSSM: two SU(2) doublets H_u , H_d :

The quartic self couplings are given by the electroweak gauge couplings \rightarrow upper tree level bound on the lighter Higgs mass

$M_h \le M_Z$

 \rightarrow Large (unnatural?) radiative corrections needed for a 125 GeV Higgs

The NMSSM

Note: The SU(2) doublets H_u and H_d of the MSSM have neutral and charged fermionic superpartners Ψ_{H_u} , Ψ_{H_d} which are not observed at LEP

- → a fermionic supersymmetric mass term $\mu \Psi_{H_u} \Psi_{H_d}$ with $\mu \sim \mathcal{O}(M_{Weak})$ must be present (μ appears also in the scalar potential)
- \rightarrow an accident? (The " μ -problem", see Kim+Nilles 1984)

Better: recall how fermionic mass terms are generated in the SM:

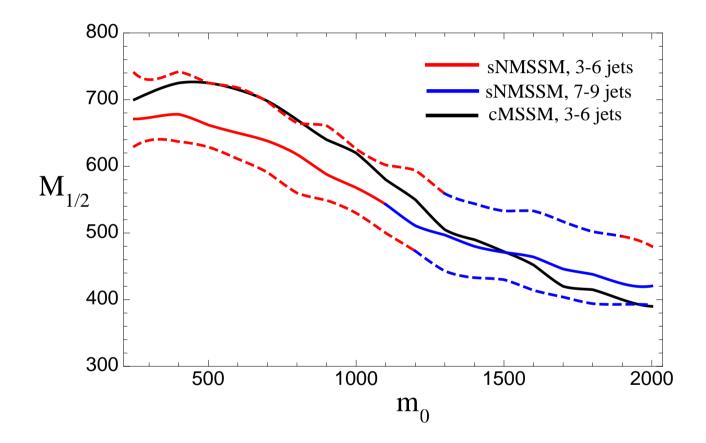
 \rightarrow introduce a Yukawa coupling $\lambda S \Psi_{H_u} \Psi_{H_d}$ to a scalar (here: a gauge singlet S)

S has automatically a vev v_s of $\mathcal{O}(M_{\mathsf{Susy}})$ due to the soft Susy breaking terms

 \rightarrow generates a mass term $\mu_{eff} = \lambda v_s$ of the desired order

Additional benefits of the NMSSM:

```
An extra quartic coupling \lambda^2 H_u^2 H_d^2 due to SUSY
```


 \rightarrow Larger mass $M_{h_{SM}} > M_Z$ at tree level (if tan $\beta \leq 5$, $\lambda \geq 0.5$)

An additional singlino Ψ_S (mixes with higgsinos/bino \rightarrow a good dark matter candidate)

 \rightarrow complicates squark/gluino decay cascades;

 \rightarrow weaker bounds from sparticle searches via E_T^{miss} ?

E.g. in the $m_0 - M_{1/2}$ plane (with D. Das, A. Teixeira, 1301.7584):

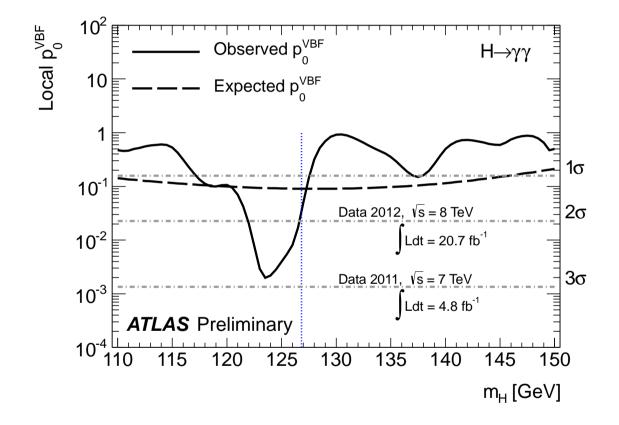
→ Slightly lower bounds on $M_{1/2}$ for $m_0 \lesssim 1$ TeV stronger alleviation possible if constraints at the GUT scale are relaxed

NMSSM: Three physical scalars, superpositions of H_u , H_d and S with vevs v_u , v_d , v_s where $v_u^2 + v_d^2 = v_{SM}^2$, but $v_u/v_d \equiv \tan\beta$ and v_s unknown Moreover: Two physical pseudoscalars, possibly a very light one

The scalar masses have to be obtained by diagonalising a 3×3 mass matrix, typically:

- a mostly SM-like eigenstate h_{SM} ,
- a mostly singlet-like eigenstate h_S ,
- a heavy MSSM-like scalar H

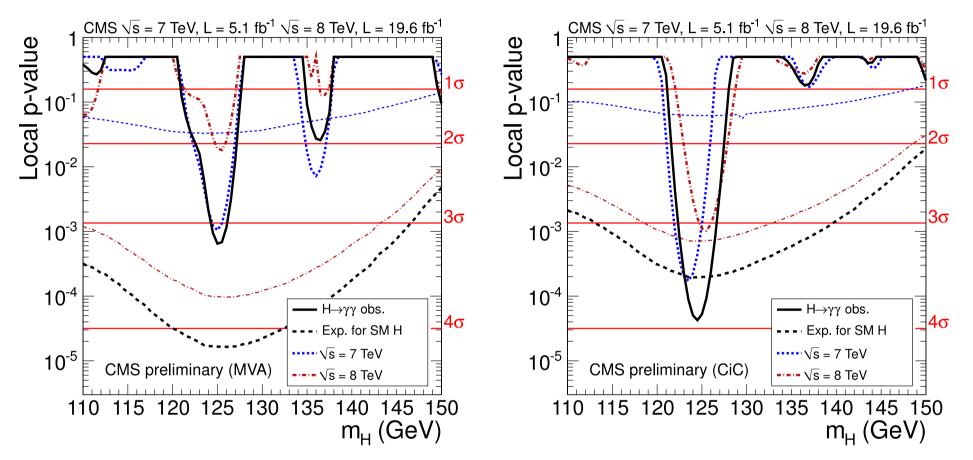
The tree level mass of the mostly SM-like h_{SM} is


$$M_{h_{SM}}^2 = M_Z^2 \cos^2 2\beta + \lambda^2 (v_u^2 + v_d^2) \sin^2 2\beta \pm (...)$$

 \pm (. . .): From mixing of the mostly SM-like scalar h_{SM} with the mostly singlet-like scalar h_S (dep. on unknown parameters); positive if $M_{h_S} < M_{h_{SM}}$!

 \rightarrow Larger mass $M_{h_{SM}} > M_Z$ at tree level, all in all: $M_{h_{SM}} \sim 125~{\rm GeV}$ does not require large (unnatural) radiative corrections

The measured signal rate in $H \rightarrow \gamma \gamma$


ATLAS-CONF-2013-012 (in Higgs prod. via Vector Boson Fusion, VBF):

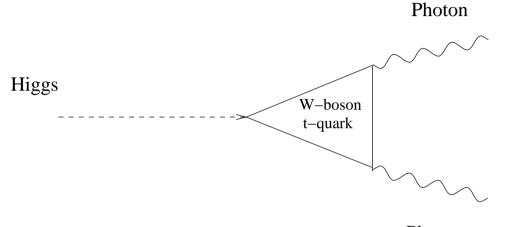
After combining with Higgs production via gluon fusion:

$$R_{\gamma\gamma} \equiv \frac{\text{measured signal rate}}{\text{Standard Model signal rate}} = 1.65 \pm 0.32$$

CMS $H \rightarrow \gamma \gamma$ (HIG-13-001-PAS, comb. VBF+ggF)

 \rightarrow Confirmation of the enhanced $\gamma\gamma$ rate in the cutbased analysis (r.h.s.), but not in the "official" MVA analysis (l.h.s.)

The $\gamma\gamma$ signal rate in the NMSSM

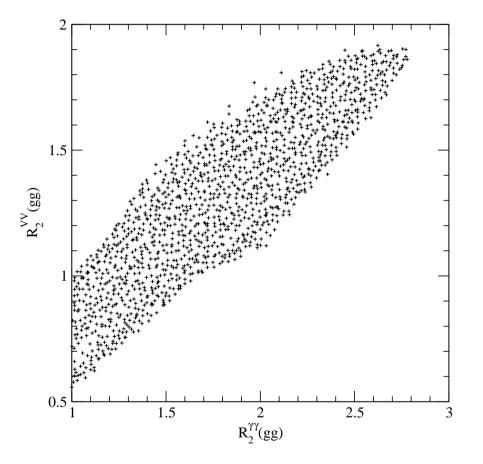

1) Recall:

$$BR(H \to \gamma \gamma) = \frac{\Gamma(H \to \gamma \gamma)}{\Gamma(H \to bb) + \dots}$$

 $(\Gamma(H \rightarrow bb)$ gives ~ 58% of the total width for a 125 GeV SM Scalar)

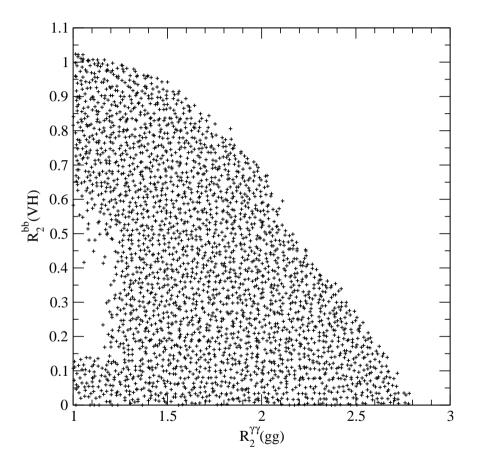
- \rightarrow Due to the mixing of H_u , H_d , S it is easily possible that, in the NMSSM, the mostly SM-like h_{SM} has
- a reduced coupling to bb, and hence a reduced width $\Gamma(h_{SM} \rightarrow bb)$ \rightarrow an enhanced $BR(h_{SM} \rightarrow \gamma\gamma)$
- nearly SM—like couplings to the top quark (whose loops induce the coupling to gluons) and to the electroweak gauge bosons
 → the production rates in gluon fusion and/or VBF are hardly reduced
- \rightarrow The $\gamma\gamma$ signal rate is enhanced (U.E. 2010)

2) Recall: In the SM, $\Gamma(H \to \gamma \gamma)$ is induced via W-boson (and top quark) loops:



In the NMSSM, the singlet S couples to the (charged) higgsinos ψ_{H_u}, ψ_{H_d} :

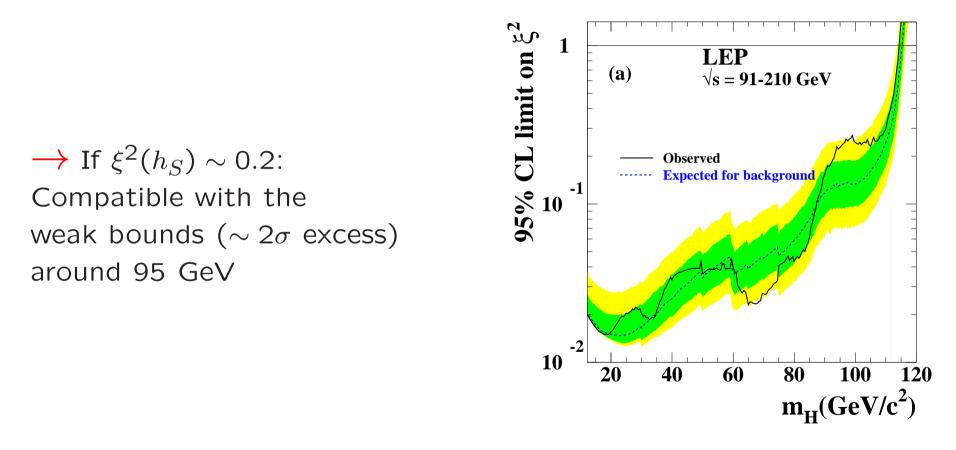
 $\lambda S \psi_{H_u} \psi_{H_d}$ (recall the generation of the μ -term through v_s)


 \rightarrow If h_{SM} has a S-component, charged higgsinos contribute to the loop and to $\Gamma(h_{SM} \rightarrow \gamma \gamma)$ unless λ is small or the higgsinos are heavy Plot of the possible signal rates in the $\gamma\gamma$ and $VV \equiv ZZ$, WW final states relative to the SM: (semi-constr. NMSSM, with C. Hugonie, 1203.5048)

 $\rightarrow R_2^{\gamma\gamma}(gg)$ can be enhanced by a factor 2 (or larger); both mechanisms 1) and 2) contribute!

 \rightarrow If $R_2^{\gamma\gamma}(gg) \lesssim 2$: $R_2^{VV}(gg) \equiv R_2^{ZZ} \equiv R_2^{WW}$ is not necessarily enhanced

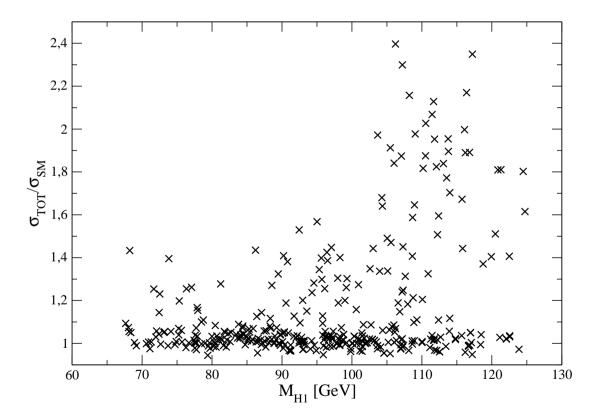
$R_2^{bb}(VH)$ against $R_2^{\gamma\gamma}(gg)$: In conflict with the SM-like signal rate $h_{SM} \rightarrow bb$?



→ If $R_2^{\gamma\gamma}(gg) \leq 1.5$: $R_2^{bb}(VH)$ is not necessarily reduced, the enhancement of $R_2^{\gamma\gamma}(gg)$ results from the additional higgsino loop, not from a reduction of $\Gamma(h_{SM} \rightarrow bb)$ If h_{SM} mixes strongly with another mostly singlet-like scalar: The mass of this mostly singlet-like h_S should be not too far from $M_{h_{SM}} \sim 125~{\rm GeV}$

 \rightarrow Are there hints for (at least weak bounds on) such a state?

Unfortunately: The couplings/signal rates of h_S are typically reduced relative to the ones of h_{SM} , but it can still be visible in some SM Higgs search channels


If this state has a mass below 114 GeV: Bounds on the signal rate ξ^2 in $Z^* \rightarrow Z + h_{SM}$ at LEP:

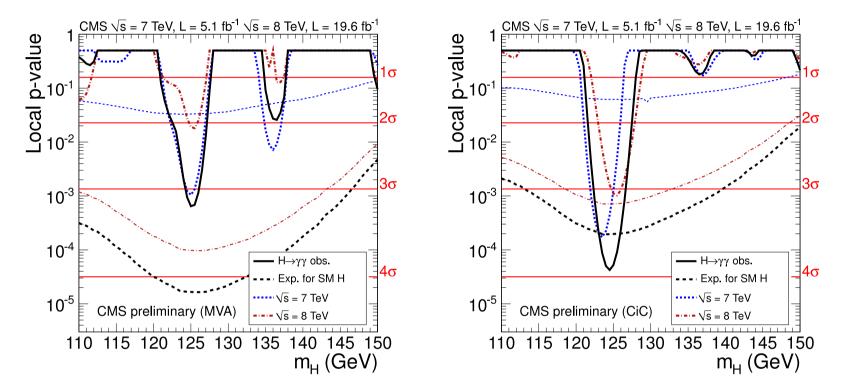
G. Belanger et al., 1210.1976: $M_{h_S}\sim 95~{\rm GeV}~{\rm with}~\xi^2(h_S)\sim 0.2~{\rm is}~{\rm a}~{\rm possible}~{\rm scenario}~{\rm in}~{\rm the}~{\rm semiconstrained}~{\rm NMSSM}$

If $M_{h_S} < M_{h_{SM}}$: Visible in Higgs pair production/measurements of triple Higgs coupling(s)?

 $(h_S + h_S) + (h_S + h_{SM}) + (h_{SM} + h_{SM})$ production cross section relative to the SM as function of $h_S = 65...125$ GeV (U.E. 1306.5541):

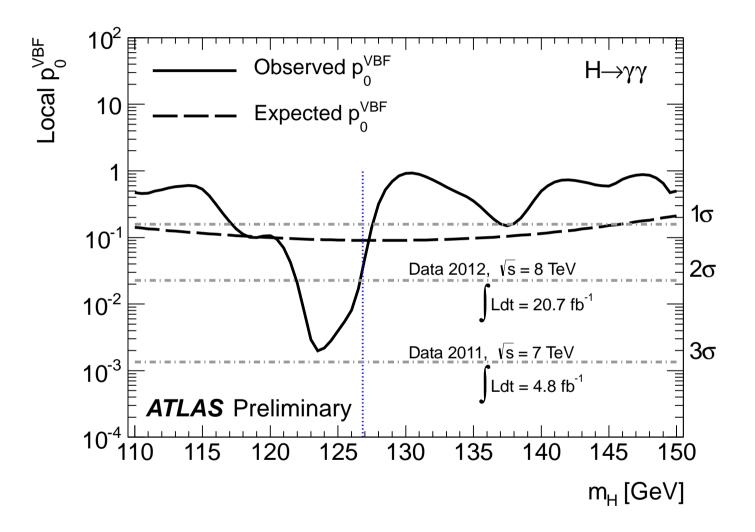
 \rightarrow Possibly, but not necessarily enhanced

The 125 GeV signal could be due to the superposition of two scalars close in mass (J. Gunion et al., 1207.1545 and 1208.1817) \rightarrow possible enhancement of the diphoton signal rate


(But: this would NOT resolve differences in mass measurements in the ZZ and $\gamma\gamma$ channels (ATLAS)!)

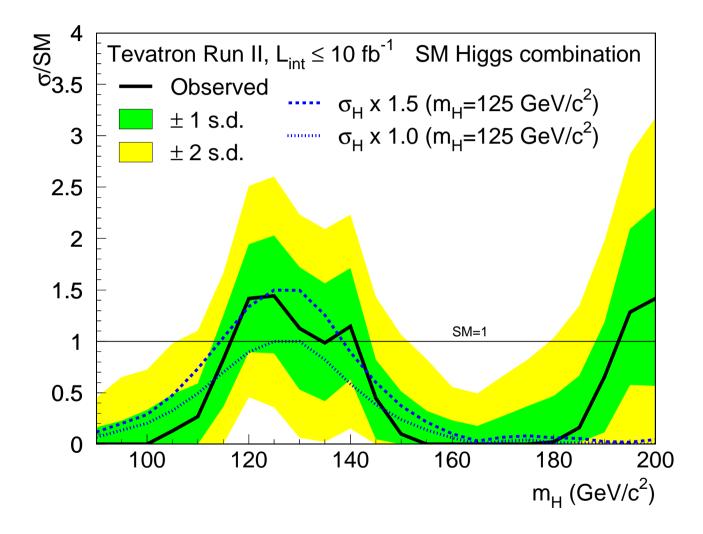
Or:

 h_S could be heavier than 125 GeV (G. Belanger et al., 1208.4952)?

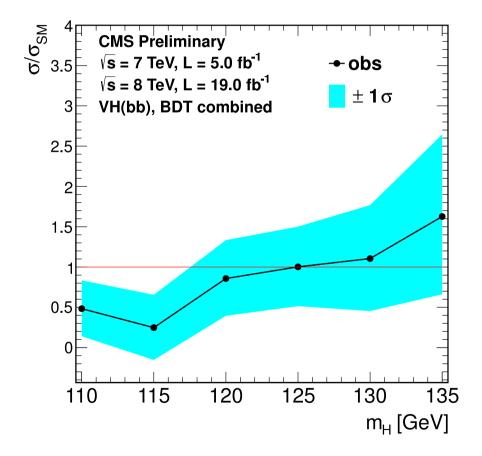

Some "appetizers":

Recall: $H \rightarrow \gamma \gamma$ at CMS (1303.4571):

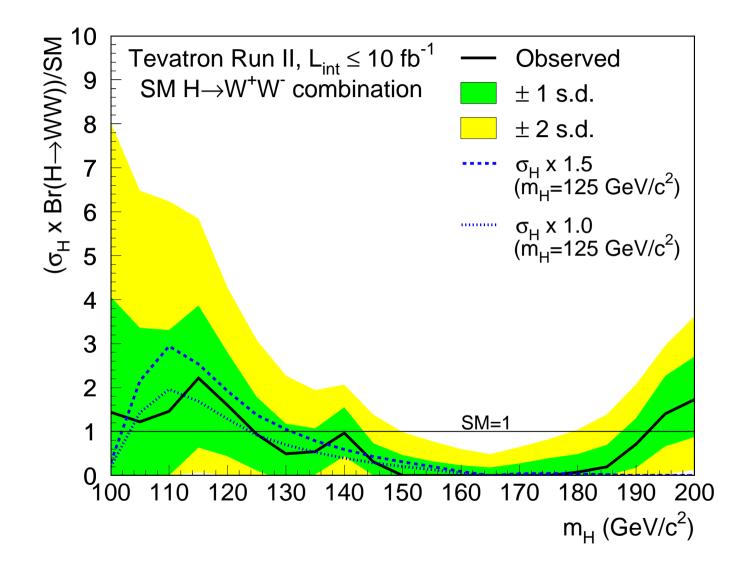
Additional ~ 2σ excess around $M_H \sim 136$ GeV (MVA analysis, l.h.s.) or: confirmation of the enhanced $\gamma\gamma$ rate of the 125 GeV Scalar in cutbased analysis, r.h.s.; still: ~ 1σ excess around $M_H \sim 136$ GeV


Recall: $H \rightarrow \gamma \gamma$ at ATLAS (ATLAS-CONF-2013-012):

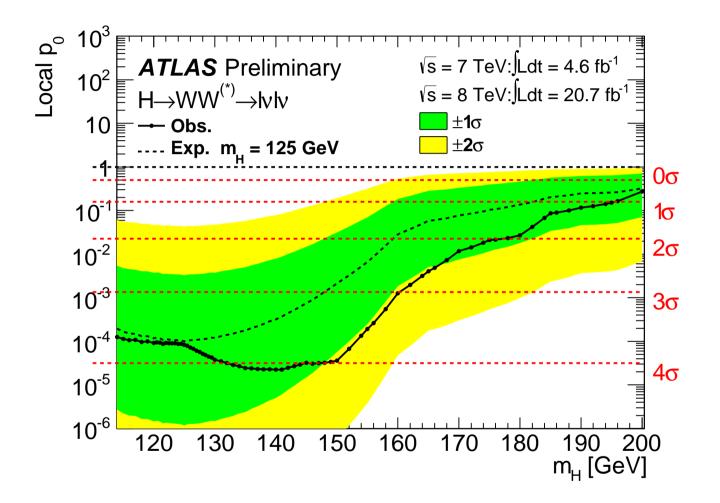
small additional excess around $M_H \sim 137$ GeV


Tevatron $VH \rightarrow bb$ (1303.6346):

(Fits to the measured signal rate relative to the SM)


small additional excess around $M_H \sim 140$ GeV (low mass resolution)

CMS $VH \rightarrow bb$ (HIG-13-012-PAS):


small additional excess for $M_H \gtrsim$ 130 GeV (low mass resolution)

Tevatron $VH \rightarrow WW$ (1303.6346):

small additional excess around $M_H \sim 140$ GeV (low mass resolution)

ATLAS $VH \rightarrow WW$ (ATLAS-CONF-2013-012):

small additional excess for $M_H \gtrsim 135$ GeV (low mass resolution)

But: only upper bounds $\leq 0.2 \times$ SM on the signal rate of an additional 137 GeV boson in $H \rightarrow ZZ$, $H \rightarrow \tau\tau$ (ATLAS, CMS)

Still: at least $6 \times (\sim 1 \sigma)$ excesses (- "look elsewhere effect") consistent with an additional \approx 137 GeV Scalar

 \rightarrow Notably in Higgs search channels with low mass resolution $WW, \ bb$ and $\tau\tau$, the SM Higgs boson (assuming SM-like signal rates) should be considered as a background, allowing to set limits on/or find evidence for additional Higgs states with reduced couplings! (Part of the "wishlist" of "On the presentation of the LHC Higgs Results", F. Boudjema et al., 1307.5865)

Conclusions

— Given $M_{h_{SM}}\sim$ 125 GeV, the NMSSM is the most natural SUSY extension of the SM: scale invariant SUSY interactions, no need for large radiative corrections, but gauge coupling unification and a good dark matter candidate as in the MSSM

— An enhanced Higgs pair production rate can be a hint for the NMSSM

- An enhanced $\gamma\gamma$ signal rate of h_{SM} can be a hint for the NMSSM
- Additional signals (below the SM signal rate, channel dependent!) in Higgs searches at masses somewhat below or above 125 GeV can be a hint for the NMSSM

Searches are ongoing...