Habemus MSSM ?

Jérémie Quevillon, LPT Orsay

GDR Terascale, LAPTh Annecy-le-vieux, October 29th 2013

A. Djouadi, JQ, arXiv:1304.1787

A. Djouadi, L. Maiani, G. Moreau, A. Polosa, JQ, V. Riquer, arXiv:1307.5205

4 E b

The post-Higgs MSSM scenario :

- observation of the lighter *h* boson at a mass of ≈ 125 GeV.
- non-observation of superparticles at the LHC.

MSSM \Rightarrow SUSY-breaking scale rather high, $M_S \gtrsim 1$ TeV.

• $M_h \approx 125$ GeV fixes the dominant radiative corrections that enter the MSSM Higgs boson masses \Rightarrow the Higgs sector can be described by only 2 free parameters (good approximation).

G Main phenomenological consequence of these high M_S values :

- reopen the low tan β region, tan $\beta \lesssim 3-5$, which was for a long time buried under the LEP constraint on the lightest *h* mass when a low SUSY scale was assumed.
- The heavier MSSM neutral \bar{H}/A and charged H^\pm states can be searched for in a variety of interesting final states.
- We consider the direct supersymmetric radiative corrections :
 - the phenomenology of the lighter Higgs state can be described by its mass and 3 couplings.
 - We perform a fit of these couplings using the latest LHC data on the production and decay rates of the light *h* boson.

・ロト ・ 同ト ・ ヨト ・ ヨト

・ロト ・ 同ト ・ ヨト ・ ヨト

In the MSSM to break the electroweak symmetry one need 2 doublets of complex scalar fields :

$$H_d = \left(\begin{array}{c} H_d^0 \\ H_d^- \end{array}\right) \text{ with } Y_{H_d} = -1 \ , \ H_u = \left(\begin{array}{c} H_u^+ \\ H_u^0 \end{array}\right) \text{ with } Y_{H_u} = +1$$

The tree-level masses of the CP-even h and H bosons depend on M_A , tan β and M_Z .

However, many parameters of the MSSM such as the SUSY scale $M_5 = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$, the stop/sbottom trilinear couplings $A_{t/b}$ or the higgsino mass μ enter M_h and M_H through radiative corrections.

In the basis (H_d, H_u) , the CP-even Higgs mass matrix can be written as:

$$M_{S}^{2} = M_{Z}^{2} \begin{pmatrix} c_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & s_{\beta}^{2} \end{pmatrix} + M_{A}^{2} \begin{pmatrix} s_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & c_{\beta}^{2} \end{pmatrix} + \begin{pmatrix} \Delta \mathcal{M}_{11}^{2} & \Delta \mathcal{M}_{12}^{2} \\ \Delta \mathcal{M}_{12}^{2} & \Delta \mathcal{M}_{22}^{2} \end{pmatrix}$$

where we have introduced the radiative corrections by a 2 \times 2 matrix $\Delta \mathcal{M}_{ii}^2$.

The hMSSM Validity of the $\Delta M_{11}^2 = \Delta M_{12}^2 = 0$ approximation

One can then derive the neutral CP even Higgs boson masses and the mixing angle α that diagonalises the *h*, *H* states, $H = \cos \alpha H_d^0 + \sin \alpha H_u^0 \& h = -\sin \alpha H_d^0 + \cos \alpha H_u^0$

$$M_{h/H}^{2} = \frac{1}{2} \left(M_{A}^{2} + M_{Z}^{2} + \Delta M_{11}^{2} + \Delta M_{22}^{2} \mp \sqrt{M_{A}^{4} + M_{Z}^{4} - 2M_{A}^{2}M_{Z}^{2}c_{4\beta} + C} \right)$$

$$\tan \alpha = \frac{2\Delta M_{12}^{2} - (M_{A}^{2} + M_{Z}^{2})s_{\beta}}{2M_{12}^{2} - (M_{A}^{2} + M_{Z}^{2})s_{\beta} + (M_{A}^{2} - M_{Z}^{2})s_{\beta} + (M_{A}$$

$$\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2 + (M_Z^2 - M_A^2)c_{2\beta} + \sqrt{M_A^4 + M_Z^4 - 2M_A^2M_Z^2c_{4\beta} + 0}$$

$$C = 4\Delta \mathcal{M}_{12}^4 + (\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)^2 - 2(\mathcal{M}_A^2 - \mathcal{M}_Z^2)(\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)c_{2\beta} - 4(\mathcal{M}_A^2 + \mathcal{M}_Z^2)\Delta \mathcal{M}_{12}^2s_{2\beta}$$

$$\begin{split} &\Delta \mathcal{M}^2_{22} \text{ involves the by far dominant stop-top sector correction,} \\ &\Delta \mathcal{M}^2_{22} \gg \Delta \mathcal{M}^2_{11}, \Delta \mathcal{M}^2_{12}. \end{split}$$

One can simply trade ΔM_{22}^2 for the by now known M_h using

$$\Delta \mathcal{M}_{22}^2 = \frac{M_h^2 (M_A^2 + M_Z^2 - M_h^2) - M_A^2 M_Z^2 c_{2\beta}^2}{M_Z^2 c_{\beta}^2 + M_A^2 s_{\beta}^2 - M_h^2}$$

In this case, one can simply write M_H and α in terms of M_A , tan β and M_h :

$$\begin{split} \mathrm{hMSSM}: & M_{H}^{2} = \frac{(M_{A}^{2} + M_{Z}^{2} - M_{h}^{2})(M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2}) - M_{A}^{2}M_{Z}^{2}c_{2\beta}^{2}}{M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2} - M_{h}^{2}} \\ \alpha = -\arctan\left(\frac{(M_{Z}^{2} + M_{A}^{2})c_{\beta}s_{\beta}}{M_{Z}^{2}c_{\beta}^{2} + M_{A}^{2}s_{\beta}^{2} - M_{h}^{2}}\right) \end{split}$$

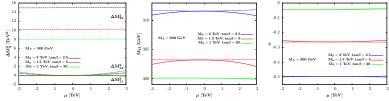
A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

-∢ ⊒ >

We first consider the radiative corrections when the subleading contributions proportional to μ , $A_{t/b}$ are included in the form of : Degrassi, Slavich, Zwirner, 2001; Carena, Haber, 2003

$$\begin{split} \Delta \mathcal{M}_{11}^2 &= -\frac{v^2 \sin^2 \beta}{32\pi^2} \bar{\mu}^2 \bigg[x_t^2 \lambda_t^4 (1 + c_{11}\ell_s) + a_b^2 \lambda_b^4 (1 + c_{12}\ell_s) \bigg] \\ \Delta \mathcal{M}_{12}^2 &= -\frac{v^2 \sin^2 \beta}{32\pi^2} \bar{\mu} \bigg[x_t \lambda_t^4 (6 - x_t a_t) (1 + c_{31}\ell_s) - \bar{\mu}^2 a_b \lambda_b^4 (1 + c_{32}\ell_s) \bigg] \\ \Delta \mathcal{M}_{22}^2 &= \frac{v^2 \sin^2 \beta}{32\pi^2} \bigg[6 \lambda_t^4 \ell_s (2 + c_{21}\ell_s) + x_t a_t \lambda_t^4 (12 - x_t a_t) (1 + c_{21}\ell_s) - \bar{\mu}^4 \lambda_b^4 (1 + c_{22}\ell_s) \bigg] \end{split}$$

We calculate "approximate" and "exact" M_H and α values for $M_h = 126 \pm 3$ GeV.

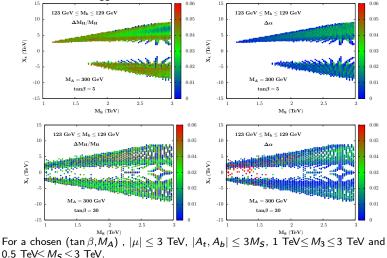


• Even for large μ , $\Delta M_H/M_H < 0.5\%$ and $\Delta lpha \lesssim 0.015$.

 \Rightarrow The approximation of determining the parameters M_H and α from tan β , M_A and the value of M_h is extremely good.

The hMSSM Validity of the $\Delta M_{11}^2 = \Delta M_{12}^2 = 0$ approximation

To check more thoroughly the impact of the subleading corrections $\Delta \mathcal{M}_{11}^2, \Delta \mathcal{M}_{12}^2$: we perform a scan of the MSSM parameter space with the full two–loop radiative corrections to the Higgs sector :



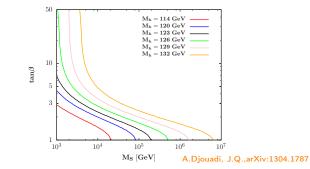
(日) (同) (目) (日) (日)

- In all cases, $\Delta M_H/M_H < 5\%$, very small values ($\ll \Gamma_H$).
- $\Delta \alpha < 0.025$ for low tan β but at high tan β one can reach ≈ 0.05 in some rare situations (large μ which enhance the $\mu \tan \beta$ contributions).
- Nevertheless, at high enough tan β , we are far in the decoupling regime already for $M_A \gtrsim 200$ GeV and such a difference does not significantly affect the couplings of the h/H bosons.
- Hence, even when including the full set of radiative corrections up to two loops, it is a very good approximation to derive the parameters M_H and α in terms of the inputs tan β , M_A and the measured value of M_h (hMSSM).
- For the charged Higgs boson mass, the radiative corrections are much smaller for large enough M_A and one has $M_{H^{\pm}} \simeq \sqrt{M_A^2 + M_W^2}$.

Motivation Present constraints on the MSSM parameter space Heavy Higgs searches channels at low tan β

- Large value of M_h + non-observation of superparticles at the LHC \Rightarrow suggest a high M_S .
- tan $\beta \lesssim$ 3 usually "excluded" by LEP2 ($M_h \gtrsim$ 114 GeV) but it assumes $M_S \sim$ 1TeV!

But we can be more relaxed: $M_S \gg M_Z \Rightarrow \tan \beta \approx 1$ could be allowed! \Rightarrow Let's reopen the low tan β regime and heavy Higgs searches.

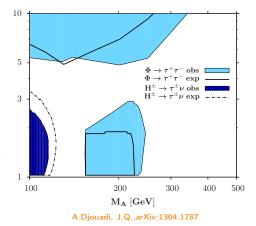


- (hMSSM) We turn $M_h \sim M_Z |\cos 2\beta| + RC$ to $RC = 126 GeV f(M_A, \tan \beta)$ ie. we trade the RC with the measured M_h
 - \Rightarrow MSSM with only 2 inputs at HO: M_A ,tan β a model indep. effective approach!

Present constraints on the MSSM parameter space

Constraints from the heavier Higgs searches at high tan β :

- CMS $H/A \rightarrow \tau \tau$ analysis : constraint very restrictive for $M_A \lesssim 250$ GeV, excludes tan $\beta \geq 5$.
- $an\beta$ Caveat · ATLAS&CMS constraint apply for a specific benchmark : $X_t/M_S = \sqrt{6}$ and $M_S = 1$ TeV.
- Exclusion limit can be obtained in any MSSM scenario. CMS search limit is effective and excludes low tan β .



- < 同 > < 回 > < 回 >

 \rightarrow Low tan β areas, thought to be buried under the LEP2 exclusion bound on M_{h} , are now open territory for heavy MSSM Higgs hunting!

 \rightarrow This can be done not only in these 2 channels but also in a plethora of channels...

Heavy Higgs searches channels at low tan β

Φ	gΦūu	₿φād	ØΦVV	$g_{\Phi AZ}/g_{\Phi H^+W^-}$
h	$\cos \alpha / \sin \beta$	$-\sin lpha / \cos eta$	$\sin(\beta - \alpha)$	$\propto \cos(\beta - \alpha)$
Н	$\sin\alpha/\sin\beta$	$\cos\alpha/\cos\beta$	$\cos(\beta - \alpha)$	$\propto \sin(\beta - \alpha)$
Α	$\cot\beta$	aneta	0	$\propto 0/1$

The decoupling limit is controlled by $g_{HVV} = \cos(\beta - \alpha)$:

$$g_{HVV} \stackrel{M_{\underline{A}} \gg M_{\underline{Z}}}{\longrightarrow} \chi \equiv \frac{1}{2} \frac{M_{Z}^{2}}{M_{A}^{2}} \sin 4\beta - \frac{1}{2} \frac{M_{22}^{2}}{M_{A}^{2}} \sin 2\beta \rightarrow 0$$

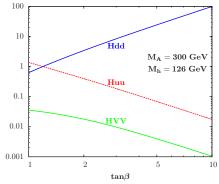
Tree-level part: doubly suppressed in both the tan $\beta \gg 1$ and tan $\beta \sim 1$ cases.

$$\sin 4\beta = \frac{4\tan\beta(1-\tan^2\beta)}{(1+\tan^2\beta)^2} \to \begin{cases} -4/\tan\beta & \text{for } \tan\beta \gg 1\\ 1-\tan^2\beta & \text{for } \tan\beta \sim 1 \end{cases} \to 0$$

The radiative part : behave as $-M_{22}^2/M_A^2 \times \cot \beta$, also vanishes at quickly at high tan β , as soon as $M_A \gtrsim M_h^{max}$. Instead, for tan $\beta \approx 1$, the decoupling limit graves are associated way decoupling limit

$$\begin{array}{ll} g_{huu} & \stackrel{M_{\mathbf{A}} \gg M_{\mathbf{X}}}{\longrightarrow} & 1 + \chi \cot \beta & \rightarrow 1 \\ g_{hdd} & \stackrel{M_{\mathbf{A}} \gg M_{\mathbf{X}}}{\longrightarrow} & 1 - \chi \tan \beta & \rightarrow 1 \\ \hline g_{Huu} & \stackrel{M_{\mathbf{A}} \gg M_{\mathbf{X}}}{\longrightarrow} & -\cot \beta + \chi & \rightarrow -\cot \beta \\ g_{Hidd} & \stackrel{M_{\mathbf{A}} \gg M_{\mathbf{X}}}{\longrightarrow} & +\tan \beta + \chi & \rightarrow +\tan \beta \end{array}$$

At low tan β : g_{HVV} is non-zero, g_{Htt} and g_{Att} are significant. \Rightarrow H/A/H[±] bosons can have sizable couplings to top quarks and massive gauge bosons if $\tan \beta \sim 3$.



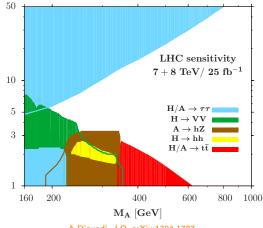
A.Djouadi, J.Q., arXiv:1304.1787

< 🗇 🕨 🖌 🚍 🕨

Heavy Higgs searches channels at low tan β

The main search channels for the H/A states :

- The $H \rightarrow WW, ZZ$ channels
- The $H/A \rightarrow t\bar{t}$ channels
- The $\mathbf{A} \rightarrow \mathbf{Z}\mathbf{h}$ channel
- The $H \rightarrow hh$ channel



< ∃⇒

 $\tan \beta$

Habemus MSSM?

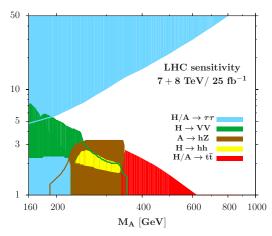
Heavy Higgs searches channels at low tan β

The $H/A \rightarrow t\bar{t}$ channels

- It has not been considered in the case of the SM Higgs for 2 reasons :
 - For $M_{H_{\rm SM}} \gtrsim 350$ GeV, $H_{\rm SM} \rightarrow WW, ZZ$ dominate over the $H_{\rm SM} \rightarrow t\bar{t}$.
 - **2** The $t\bar{t}$ background was thought to be overwhelmingly large (it had to be evaluated in a large mass window because of the large Γ_H).
- Situation different in the MSSM : $\Gamma_{H/A} \lesssim 20$ GeV for tan $\beta \gtrsim 1$ and * $M_{H,A} \lesssim 500$ GeV (and grow linearly with the Higgs masses beyond this value)

 \Rightarrow one can integrate the $t\bar{t}$ continuum background in a smaller invariant mass bin and enhance the S/B ratio.

• BR $(H/A \rightarrow t\bar{t}) \approx 100\%$ for $\tan \beta \leq 3$ if kinematically open.



・ 同 ト ・ ヨ ト ・ ヨ ト

Search for $H/A \rightarrow t\bar{t}$ will be more favorable for the MSSM at low tan β than in the SM.

Habemus MSSM?

• Knowing [tan β , M_A] and fixing $M_h = 125$ GeV, the couplings of the Higgs bosons can be derived, including the generally dominant radiative corrections that enter in the MSSM Higgs masses :

$$c_V^0 = \sin(eta - lpha) \;, \;\; c_t^0 = rac{\coslpha}{\sineta} \;, \;\; c_b^0 = -rac{\sinlpha}{\coseta}$$

- However, there are also direct radiative corrections to the Higgs couplings not contained in the mass matrix. These can alter this simple picture!
- The $hb\bar{b}$ coupling : modified by additional one–loop vertex corrections, $c_b \approx c_b^0 \times [1 - \Delta_b/(1 + \Delta_b) \times (1 + \cot \alpha \cot \beta)]$

 Δ_b : SUSY-QCD corr. with sbottom-gluino loops

• The $ht\bar{t}$ coupling : derived indirectly from $\sigma(gg \to h)$ and $BR(h \to \gamma\gamma)$, $c_t \approx c_t^0 \times \left[1 + \frac{m_t^2}{4m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 - (A_t - \mu \cot \alpha)(A_t + \mu \tan \alpha))\right]$

•
$$c_c = c_t^0$$
 and $c_\tau = c_b^0$.

• Invisible decays? (Djouadi,Falkowski,Mambrini,JQ, arXiv:1205.3169) \Rightarrow neutralinos are relatively light and couple significantly to $h \rightarrow$ rather unlikely.

4 A N 4 B N

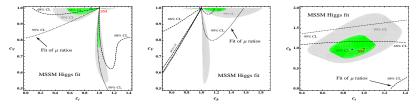
- If large direct corrections \Rightarrow 3 independent *h* couplings : $c_c = c_t, c_\tau = c_b$ and $c_V = c_V^0$.
- To study the *h* state at the LHC, we define the effective Lagrangian :

$$\mathcal{L}_{h} = c_{V} g_{hWW} h W_{\mu}^{+} W^{-\mu} + c_{V} g_{hZZ} h Z_{\mu}^{0} Z^{0\mu} - c_{t} y_{t} h \bar{t}_{L} t_{R} - c_{t} y_{c} h \bar{c}_{L} c_{R} - c_{b} y_{b} h \bar{b}_{L} b_{R} - c_{b} y_{\tau} h \bar{\tau}_{L} \tau_{R} + \text{h.c.}$$

• We fit the Higgs signal strengths : $\mu_{\mathbf{X}} \simeq \frac{\sigma(\mathbf{pp} \rightarrow \mathbf{h}) \times \mathrm{BR}(\mathbf{h} \rightarrow \mathbf{XX})}{\sigma(\mathbf{pp} \rightarrow \mathbf{h})_{\mathrm{SM}} \times \mathrm{BR}(\mathbf{h} \rightarrow \mathbf{XX})_{\mathrm{SM}}}$

Best-fit value : $c_t = 0.89$, $c_b = 1.01$ and $c_V = 1.02$ (ATLAS & CMS data).

If we neglect direct corrections \rightarrow 2 parameters fits :



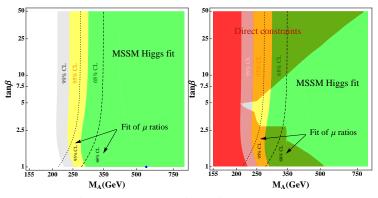
best-fit points : ($c_t = 0.88$, $c_V = 1.0$), ($c_b = 0.97$, $c_V = 1.0$) and ($c_t = 0.88$, $c_b = 0.97$)

200

Direct radiative corrections to the Higgs couplings The effective Lagrangian and 3D/2D-fits The 2D-fit in the hMSSM

Using the expressions defining the hMSSM one can perform a fit in the plane [tan β , M_A].





Djouadi, Maiani, Moreau, Polosa, JQ, Riquer, arXiv:1307.5205

We also superimpose on these indirect limits, the direct constraints on the heavy $H/A/H^{\pm}$ boson searches performed by the ATLAS and CMS (as discussed earlier).

Direct radiative corrections to the Higgs couplings The effective Lagrangian and 3D/2D-fits The 2D-fit in the hMSSM

Conclusion :

• We have discussed the hMSSM, i.e. the MSSM that we seem to have after the discovery of the Higgs boson at the LHC.

 \Rightarrow the MSSM Higgs sector can be described by only $(\tan \beta, M_A)$ if the information $M_h = 125$ GeV is used.

• $M_h \approx 125$ GeV and the non–observation of SUSY particles, seems to indicate that the soft–SUSY breaking scale might be large.

 \Rightarrow We have considered the production of the heavier H,A and H^\pm bosons of the MSSM at the LHC, focusing on the low tan β regime.

• We have shown that to describe the *h* properties when the direct radiative corrections are also important, we need the 3 couplings *c*_t, *c*_b and *c*_V.

 \Rightarrow the best fit point turns out to be at low tan β , tan $\beta \approx 1$, and with a not too high CP-odd Higgs mass, $M_A \approx 560$ GeV. But it's to early to say anything!

- Except may be : the phenomenology of this point is quite interesting and accessible at the next LHC run.
- Correct relic abundance of the LSP can be easily obtained through $\chi_1^0\chi_1^0\to A\to t\bar{t}$.