EXPERIMENT http://atlas.ch Run: 203602 Event: 82614360 Date: 2012-05-18 Time: 20:28:11 CEST

# Search for FCNC in $t \rightarrow cH$

- Motivation
- > Analyses
  - Di-photon analysis
  - Inclusive multi-lepton final states
- Conclusion

# Why search for top decays to light up type quark + X, t $\rightarrow$ cX ?

 ✓ Flavour changing neutral current (FCNC) involving light u, c quarks are highly suppressed in the standard model : GIM mechanism



Motivation

$$\Gamma(t \to cV) \propto |V_{cb}|^2 \alpha_{QED}^2 \alpha m_t (\frac{m_b}{m_W})^4$$

+ Z, $\gamma$ , (g) line attached to any (quark) line

Loop controlled by down quark ~  $m_b$  $\Rightarrow$  much more suppressed than FCNC in the down sector (e.g. b  $\rightarrow$  s  $\gamma$ )

• V = g : 
$$\alpha = \alpha_s$$
, Br ~ 10<sup>-12</sup>  
• V = Z/ $\gamma$  :  $\alpha = \alpha_{OED}$ , Br ~ 10<sup>-14</sup>-10<sup>-13</sup>

Even worth for the decay to Higgs boson  $Br \sim 10^{-15}$ 



Is this generic in most of popular BSM models?

Additional heavy quarks, e.g. vector like quarks :

3x3 CKM matrix no longer unitary ⇒ GIM mechanism to suppress SM amplitudes relaxed

tree level flavour changing gauge and scalar interactions

E.g. for Q = 2/3 up type singlet :

$$\begin{array}{l} \mathrm{B}(t \rightarrow \mathrm{cZ}) \ \sim < 10^{-4} \\ \mathrm{B}(t \rightarrow \mathrm{cH}) \ \sim < 4. \ 10^{-5} \\ \mathrm{(B}(t \rightarrow \mathrm{c}(\gamma/\mathrm{g})) \ \mathrm{less \ enhanced}) \end{array}$$

(down type Q = -1/3 singlet gives much less enhancements because of more constrains in the down quark sector) Two Higgs Doublet Models : prejudice from Natural Flavor Conservation Avoid fine tuning (small couplings) to get rid of FCNC by :

 $\Rightarrow$  coupling a single doublet to fermions

#### 2HDM-I

 $\Rightarrow$  coupling up-type fermion to a doublet and down type to another one 2HDM-II (SUSY)

⇒ No tree level FCNC, but large enhancements still possible (B ~ 10<sup>-5</sup>) especially in SUSY-QCD from tree level FC gluino couplings (more and more constrained by direct SUSY searches...) or in general 2HDM-II, at high tanβ (purely EW contribution)

However small couplings can be *natural* : NFC not really needed e.g. Cheng-Sher scenario (inspired from Fritzsch ansatz) : mass matrix given by

$$M_{ij} = \Delta_{ij} \sqrt{m_i m_j} \quad \Delta_{ij} \sim O(1)$$

Leading to Yukawa couplings  $\lambda_{ij} \sim \frac{\sqrt{m_i m_j}}{v} \sim \frac{\sqrt{m_i m_j}}{2m_W}g$  $\Rightarrow 2\text{HDM-III}$ 

less well defined than the two others, tree level FCN scalar interactions but still no gauge FCNC (GIM intact)

For (i,j) = (t,c),  $\lambda \sim 10\%$  g, not a small coupling !

For light quarks, light masses involved  $\Rightarrow$  small couplings and constrains from flavour OK

So, why search for top decays to light up type quark + X, t  $\rightarrow$  cX ?

- ✓ LHC Run I : observation of a new (scalar) boson H with mass  $m_{\rm H} \sim 125.5 \text{ GeV/c}^2$  $m_{\rm t} > m_{\rm H} + m_{\rm c} \Rightarrow \text{why not }?$
- ✓ FCNC are experimentally less constrained (single top production at LEP, Hera, Tevatron D-D mixing, t → q Z/ $\gamma$  at Tevatron) than the ones in the down type sector
- $\checkmark$  LHC is a top factory, that can be used to search for such processes, e.g. in top decays

 $t \rightarrow q g/\gamma/Z/H$ 

|                                     |                             | SM expectation                                 | Max expect. in some exotics (*)              | Limits on Br, % (95% CL)                                                                                                                                          |
|-------------------------------------|-----------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(c/u~(SM) \sim  V_{cb}/V_{ub} ^2)$ | $t \rightarrow c(u) g$      | ~ 5. 10 <sup>-12</sup> (4. 10 <sup>-14</sup> ) | ~ 2. 10 <sup>-4</sup> (2. 10 <sup>-4</sup> ) | Direct : very hard at LHC<br>Search for single top strong production instead :<br>7.6 10 <sup>-5</sup> (1.5 10 <sup>-5</sup> ), ATLAS 8TeV, 14.2 fb <sup>-1</sup> |
|                                     | $t \rightarrow c(u) \gamma$ | ~ 5. 10 <sup>-14</sup> (4. 10 <sup>-16</sup> ) | ~ 2. 10 <sup>-6</sup> (2. 10 <sup>-6</sup> ) | hard                                                                                                                                                              |
|                                     | $t \rightarrow c(u) Z$      | ~ 10 <sup>-14</sup> (10 <sup>-16</sup> )       | ~ 10 <sup>-4</sup> (10 <sup>-4</sup> )       | 0.07 / 0.73<br>(8 TeV CMS 19.5 fb <sup>-1</sup> / 7 TeV ATLAS 2.1 fb <sup>-1</sup> )                                                                              |
|                                     | $t \rightarrow c(u) H$      | $\sim 3.\ 10^{-15} (2.\ 10^{-17})$             | ~ 10 <sup>-3</sup> (10 <sup>-5</sup> )       | _                                                                                                                                                                 |

⇒ Any observation of such processes is a non ambiguous sign of new physics Some models predict enhancement by several order of magnitude (not to the % level though...), largest enhancement from 2HDM models (especially type III) Analyses

Playing with di-photon events (ATLAS) :

Search for FCNC in top decays t  $\rightarrow$  cH, followed by H  $\rightarrow \gamma\gamma$ Pair production of top quarks are considered :

one of the top decays to cH, the other decays to Wb

$$pp \rightarrow t\bar{t} \rightarrow W^+ b Hc \rightarrow f\bar{f}' b \gamma \gamma c + c.c.$$

For  $H = H_{SM}$  and  $B(t \rightarrow cH) = 1\%$ , expect N ~ 260 produced events in the LHC RunI data set

A rather straightforward analysis : start from the standard  $H \rightarrow \gamma\gamma$  inclusive selection  $\rightarrow$  two high  $p_T$  (30/40 GeV/c) isolated photons (tight identification criteria)  $\rightarrow$  add cuts on jets and invariant masses to fully reconstruct the final state (one W (lept. or hadr.), one Higgs boson, two tops)

Initial yy sample :

```
~ 24K (7 TeV) + ~ 119 K (8 TeV) events
with m_H \in [100, 160] \text{ GeV/c}^2
```

- three jets : the hadronic channel (at 7 and 8 TeV)
- a lepton ( $e/\mu$ ), a neutrino and a b-jet : the leptonic channel (only at 8 TeV)



### Leptonic channel

One lepton, at least 2 jets At least one b-tag (70% b-efficiency) No other lepton  $m_T(l,E_T^{miss}) > 30 \text{ GeV/c}^2$ From the 2 leading jets :  $m_{\gamma\gamma j} \in [156,191] \text{ GeV/c}^2$   $m_{l\nu j} \in [135,205] \text{ GeV/c}^2$ ( $p_z^{\nu}$  from W mass constrain) (if 3<sup>rd</sup> or 4<sup>th</sup> b-tagged, and 2<sup>nd</sup> or 3<sup>rd</sup> not, use it instead)





Results :

Hadronic channel (7+8 TeV combined) :

$$\begin{split} N_{FCNC}(B(t \rightarrow cH) = 1\%) &= 10.9 \pm 0.8_{theory} \\ N_{H}^{SM} &= 0.28 \pm 0.10_{theory+lumi} \end{split}$$

 $N_{obs} = 50$ 



$$\begin{split} N_{FCNC}(B(t \rightarrow cH) = 1\%) &= 2.9 \pm 0.2_{theory} \\ N_{H}^{SM} &= 0.05 \pm 0.01_{theory+lumi} \end{split}$$

 $N_{obs} = 1, m_{\gamma\gamma} = 147 \text{ GeV}/c^2$ 

 Systematic uncertainties : dominated by photon ID and isolation, (increased w.r.t. standard H analysis to account for busier environment)
 + jet energy scale, b-tagging and underlying event modelisation



Statistical interpretation :

- Hadronic channel : enough events to determine background under the peak from fit to the m<sub>γγ</sub> distribution : bkg shape = 2<sup>nd</sup> order polynomial / signal shape : Crystal-Ball + wide Gaussian
- Leptonic channel, two bin shape analysis : constrain bkg expectation in signal region ([123,129] GeV/c<sup>2</sup>) from control region [100,123[U]129,160] GeV/c<sup>2</sup>



No signal observed  $\Rightarrow$  limit



Re-interpreting multi lepton searches (CMS) :

➤ Use the weak boson and tau decays of H, in multi-lepton final states

- more events (B(H  $\rightarrow$  WW\*  $\rightarrow$  e/ $\mu \nu e/\mu \nu$ ) ~ 1% + ZZ\* +  $\tau^+\tau^-$ )
- more difficult to interpret than the di-photon channel in case of an excess (no full reconstruction)
  - $\Rightarrow$  better for limit setting...



- + a number of categories defined from
  - ✓ number of b-tagged jets (0 / ≥1)
  - ✓  $H_T$  (sum of all good jet  $p_T$ )

 $\checkmark E_t^{\text{mis}}$ 

 ✓ the consistency of an Opposite Sign Same Flavour lepton pair with a Z

No excess seen  $\Rightarrow$  limit

 $B(t \rightarrow cH) < 0.31\% @ 95\% CL$ (0.31% expected)

(essentially from H  $\rightarrow$  WW\* : if no ZZ\*/ $\tau^+\tau^-$ : B < 0.37%)



corresponding to a limit on *tcH* coupling  $\lambda_{tcH} < 0.1$ 

## Conclusion

 ➤ SM yields for FCNC t → cX process are extremely small (beyond reach of any experiment)

Some not-so-unlikely models of BSM predict branching ratios within the reach of LHC : e.g. in 2HDM-III, B(t → cH)\* up to 10<sup>-3</sup> can be obtained

 $\Rightarrow$  spectacular signatures : Higgs feed down from top pair production

The sensitivity at LHC runII will be greatly improved thanks to the  $\sim$  4x enhancement of the top pair production cross-section

 Some of these models have also direct impact on the Higgs boson phenomenology (e.g. H → cc might be as large as H → bb, H → gg / τ<sup>+</sup>τ<sup>-</sup> might be modified significantely)

> \* t  $\rightarrow$  uH is also possible ATLAS search sensitive to this decay