VH→bb: Experimental Review

Georges Aad CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

GDR Terascale – Annecy-le-Vieux Octobre 28th, 2013

Outline

• Quickly, why (V) $H \rightarrow bb$?

Search for VH(H→bb) at the LHC
ATLAS (4.7 fb⁻¹ @7 TeV and 20.3 fb⁻¹ @8 TeV)
ATLAS-CONF-2013-079
CMS (5.1 fb⁻¹ @7 TeV and 18.9 fb⁻¹ @8 TeV)
arXiv:1310.3687v1
ATLAS and CMS Strategies (commonalities)
ATLAS and CMS Strategies (particularities)
VZ(Z→bb) results
results

● D0 spin results with VH(H→bb) ● 9.5-9.7 fb⁻¹ ● testing J^P = 2⁺ with graviton like coupling (Randall-Sundrum model) ● D0 Note 6387-CONF

Why $VH(H \rightarrow bb)$?

A Higgs boson is discovered at the LHC

is it The SM Higgs Boson?
coupling to fermions yet to be established

•H \rightarrow bb: highest branching ratio at m_H=125 GeV (58%)

 especially important at the LHC for coupling measurements precision
 total width not directly measurable

● gg→H→bb impossible to extract from large QCD background
 ● additional signature needed
 ● VH associated production in this talk

VH→bb @LHC - Backgrounds

Georges Aad – CPPM

VH→bb @LHC – Selection Overview

Georges Aad – CPPM

VH→bb @LHC - Analysis Strategy

- Reconstruct the "transverse" V (W,Z) boson
- Reconstruct the Higgs candidate using two b-jets
- Divide into several pT(V) regions to take advantage of the higher signal purity at high boost

Not for o-lepton pTV range in GeV								
ATLAS	0-90	¥	¹ 90-120	1	L20-160	160	-200	>200
CMS - WI ν	-		100-1	30	130-13	80		>180
CMS - $W\tau\nu$		-				;	>120	
CMS - ZII	-	50-100				>10	D	
CMS - Zvv	-		100-1	30	130-170)		>170

Fit performed simultaneously in all channels and pT(V) bins
 ATLAS: cut-based analysis with m_{bb} as final discriminant
 CMS: Multivariate analysis with the BDT output as final discriminant

Cut-based analysis + simultaneous m_{bb} fit in several signal and control regions

Georges Aad – CPPM

Georges Aad – CPPM

GDR Terascale 2013

Georges Aad – CPPM

Georges Aad – CPPM

GDR Terascale 2013

VH→bb @ATLAS (Bkg Modeling)

Bkg norm from fit

• but need to control the migrations between different regions: njets/ntags, pTV and m_{bb} bins

- Systematics (corrections when needed) are derived for each Bkg
 - e.g. $\Delta \varphi(j,j)$ correction for V+jets
 - improves pTV as well as other variables

	mbb	Δφ(j,j)	pTV	3-to-2-jets	HF composition
W+jets	MC	data	data	MC	MC
Z+jets	data	data	data	МС	MC
tt	MC	-	data	MC	-
Single top	MC	-	MC	МС	-
diboson	MC	-	MC	МС	-
multijet	data	-	data	free	-

More important with shrinking experimental uncertainties

11/24

Georges Aad – CPPM

VH→bb @CMS - Strategy

• Use BDT with several kinematic, btag and topology variables to separate the signal from backgrounds

Zoom on

signal BDT

12/24

- specific BDTs to separate specific backgrounds (top, V+jets, diboson)
- classify events in different background region
- final BDT in signal region to select signal
- merge the 4 BDT outputs in one distribution

• Fit a total of 14 distributions in all channels and pTV bins

Georges Aad – CPPM

VH→bb @CMS - Strategy

• Use BDT with several kinematic, btag and topology variable to separate the signal from background

- specific BDTs to separate specific backgrounds (top, V+jets, diboson)
- classify events in different background region
- final BDT in signal region to select signal
- merge the 4 BDT output in one distribution

VH→bb @CMS - Bkg Control Regions

- Prior to the final fit the bkg norm is extracted from different control regions
 - fit the btag weight (CSVmax) variable independently for each channel
 modeling and scale factors validated using additional variables
 - results used as input to the final fit

Georges Aad – CPPM

GDR Terascale 2013

VH→bb @CMS - b-jet Regression

- Improving b-jets energy (m_{bb}) resolution using a multivariate regression technique
 BDT including:
 - \rightarrow iot substructure va
 - jet-substructure variables
 - tracks and vertex in jet variables
 - soft-lepton variables (for semi-leptonic decays)
 - ➢ Event kinematics (ETmiss) variables in case of ZH→llbb

Improve m_{bb} resolution by 15%
Improve analysis sensitivity by 10%-20%

VH(Z)→bb @LHC - Results

Validation of the VH analyses using VZ events nice peak at the Z mass

Georges Aad – CPPM

GDR Terascale 2013

VZ→bb @LHC - Results

Fit performed for VZ in a similar way as for ZH extracted signal strength compatible with SM

Georges Aad – CPPM

VH→bb @LHC - Results

Both results compatible with the presence of a SM Higgs boson Compatible results for W and Z associated production

Georges Aad – CPPM

VH→bb @LHC - Results

ATLAS m_H=125 GeV Expected Limit: 1.3 Observed Limit: 1.4

CMS m_H=125 GeV Expected Limit: 0.95 Observed Limit: 1.89

Georges Aad – CPPM

VH→bb @LHC - Results

ATLAS m_H=125 GeV Expected Limit: 1.3 Observed Limit: 1.4 No significant excess SM Higgs probability: 0.36 (expected 1.6σ)

CMS m_H=125 GeV Expected Limit: 0.95 Observed Limit: 1.89 2.1 sigma excess (expected 2.1σ)

20/24

Georges Aad – CPPM

VH→bb Spin @D0 - Introduction

- Evidence @Tevatron for the presence of H→bb
- ◆ First test of Higgs boson spin and parity in H→bb channels
 ◆ ATLAS(CMS) excluded a 2⁺ Higgs
 - boson in bosonic decay channels
- Testing the 2⁺ hypothesis with a graviton like coupling (Randall-Sundrum model)

• Analysis based on D0 results for VH \rightarrow bb searches

- harphi µ=1.23^{+1.24}_{-1.17}
- Assumptions:
 - 2⁺ production cross section and BR equal to SM
 - test 2+ hypothesis

 ${\ensuremath{\bullet}}$ or mixture of 2+ and o+ with a total corresponding to SM $\sigma.BR$

 \succ set a lower limit on the 2⁺ fraction

VH→bb Spin @D0 - Strategy

Georges Aad – CPPM

VH→bb Spin @D0 - Results

Georges Aad – CPPM

GDR Terascale 2013

Conclusion

- ♦ No doubt that H→ff and particularly H→bb represent one of the most important programs for the LHC in the near future
 ♦ VH channels are the most sensitive for H→bb searches
- ATLAS and CMS latest results presented with the full 2011 and 2012 datasets
 - ◆ CMS: observed (expected) limit of 1.89 (0.95) @95% CL for m_H=125 GeV
 ➢ Local significance of 2.1 s.d.
 - ATLAS: observed (expected) limit of 1.4 (1.3) @95% CL for m_H=125 GeV
 No significant excess observed with signal p-value=0.36
- D0 presented the first spin-parity analysis using $H \rightarrow bb$ channels • fraction of $J^p=2^+ > 0.57 (0.71)$ excluded for $\mu=1.23 (1.00) @95\%$ CL
- ♦ Run II data will be conclusive about (V)H→bb @LHC
 ♦ More importantly, enhanced precision on the Higgs coupling and constraint on the decay width

Extra Slides

VH→bb @ATLAS - Selection

Object	0-lepton	1-lepton	2-lepton			
Loptons	0 loose leptons	1 tight lepton	1 medium lepton			
Leptons		+ 0 loose leptons	+ 1 loose lepton			
		2 <i>b</i> -tags				
Iets	$p_{\rm T}^{\rm jet_1} > 45 { m ~GeV}$					
3013	$p_{\rm T}^{\rm jet_2} > 20 { m ~GeV}$					
	$+ \le 1$ extra jets					
Missing F.	$E_{\rm T}^{\rm miss} > 120 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 25 { m Gev}$	$E_{\rm T}^{\rm miss} < 60 { m ~GeV}$			
Wissing LT	$p_{\rm T}^{\rm miss} > 30 { m ~GeV}$					
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$					
	$\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$					
	$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$					
Vector Boson	-	$m_{\rm T}^W < 120 { m ~GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$			

	$p_{\rm T}^V$ [GeV]	0-90	90-120	120-160	160-200	>200
All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4
1 Japton	$E_{\rm T}^{\rm miss}$ [GeV]			>50		
1-lepton	$m_{\rm T}^W$ [GeV]		0			

Georges Aad – CPPM

VH→bb @CMS - Selection

Variable	$W(\ell \nu)H$	$W(\tau\nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$p_{\rm T}({ m V})$	[100–130] [130–180] [>180]	[>120]	[50-100] [>100]	[100–130] [130–170] [>170]
$m_{\ell\ell}$	-	_	[75–105]	_
$p_{\mathrm{T}}(\mathbf{j}_1)$	>30	>30	>20	>60
$p_{\mathrm{T}}(\mathbf{j}_2)$	>30	>30	>20	>30
$p_{\rm T}(jj)$	>100	>120	-	[>100] [>130] [>130]
m(jj)	<250	<250	[40-250] [< 250]	<250
$E_{\rm T}^{\rm miss}$	>45	> 80	-	[100–130] [130–170] [> 170]
$p_{\rm T}(\tau)$	-	>40	-	_
$p_{\rm T}({\rm track})$	-	>20	-	_
CSV _{max}	>0.40	>0.40	[>0.50] [>0.244]	>0.679
CSV _{min}	>0.40	>0.40	>0.244	>0.244
N_{aj}	-	_	-	[< 2] [–] [–]
$N_{\mathrm{a}\ell}$	=0	=0	-	=0
$\Delta \phi(V, H)$	-	-	-	>2.0
$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet})$	-	-	-	[>0.7] [>0.7] [>0.5]
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}({\rm tracks}))$	-	-	-	<0.5
$E_{\rm T}^{\rm miss}$ significance	-	-	-	[>3] [–] [–]
$\Delta \phi(E_{\rm T}^{\rm miss},\ell)$	$<\pi/2$	-	-	_

VH→bb @ATLAS – m(bb)

Z→ll W→lv $Z \rightarrow \nu \nu$ stents 3500 3000 Events Events Data
 VH(bb) (best fit Data
 VH(bb) (best fit) 800 Data
 VH(bb) (best fi ATLAS Preliminary ATLAS Preliminary ATLAS Preliminary VZ VZ vz 📰 VZ Multije 300 √s = 7 TeV ∫Ldt = 4.7 fb⁻¹ \s = 7 TeV [Ldt = 4.7 fb⁻¹ √s = 7 TeV ∫Ldt = 4.7 fb⁻¹ tī ti Z+bb Z+cl Z+cc Z+cc Wicertainty --- Pre-fit background VH(bb) (µ=1.0) tī 700 t, s+t chan √s = 8 TeV ∫Ldt = 20.3 fb⁻¹ <mark>_</mark>tt̃ ∎t,s+t chan √s = 8 TeV [Ldt = 20.3 fb⁻¹ √s = 8 TeV ∫Ldt = 20.3 fb⁻¹ Wt W+bb 2 lep., 2 jets, 2 tags, p <- <90 GeV Wt 0 lep., 2 jets, 2 tags, 120<p__^V<160 GeV 1 lep., 2 jets, 2 tags, p < < 90 GeV 250 W+cc 600 W+bb 2500 W+cl W+cc W+cl Z+bb Z+bl Low pTB Z+bb 500F VH(bb) (μ=1.0) Z+cc 200 Z+cl 2000 ZZ Uncertainty ---- Pre-fit background 400F VH(bb) (μ=1.0) 150 1500 300 100 200 1000 100F 50 500 .5E Data/MC Data/MC 1.5 Data/MC 1 5 0.5 50 150 200 100 250 0.5 m_{bb} [GeV] 50 100 150 200 250 50 100 150 200 250 m_{bb} [GeV] m_{bb} [GeV] Events Events Events - Data VH(bb) (best fit) - Data VH(bb) (best fit Data
 VH(bb) (best fit) 18 ATLAS Preliminary 80 ATLAS Preliminary ATLAS Preliminary VZ vz VZ Multije √s = 7 TeV ∫Ldt = 4.7 fb⁻¹ √s = 7 TeV ∫Ldt = 4.7 fb⁻¹ Z+bb √s = 7 TeV [Ldt = 4.7 fb⁻¹ 70E 60 · 16 tī Z+bl Z+cc Z+cl Z/Uncertainty -- Pre-fit background VH(bb) (μ=1.0) W+bb tī t. s+t chan √s = 8 TeV Ldt = 20.3 fb⁻¹ √s = 8 TeV [Ldt = 20.3 fb⁻¹ W+cc √s = 8 TeV ∫Ldt = 20.3 fb⁻¹ W+cl 2 lep., 2 jets, 2 tags, p >200 GeV Wt 14 0 lep., 2 jets, 2 tags, p v>200 GeV 1 lep., 2 jets, 2 tags, p >200 GeV W+bb 60 50 Z+bl W+bl Z+cc High pTB W+cc W+cl 12 Z+cl 50 W+I ••• Pre-fit backgrou VH(bb) (µ=1.0) 40 Uncertainty Pre-fit background VH(bb) (μ=1.0) 10 40 30 8 30 6ł 20 20 10 10 Data/MC Data/MC 1.5 1.5 Data/MC *211111* 0.5 0.5 0 ____ 250 50 100 150 200 250 250 200 150 200 50 100 150 50 100 m_{bb} [GeV] m_{bb} [GeV] m_{bb} [GeV]

Georges Aad – CPPM

GDR Terascale 2013

VH→bb @CMS – BDT Output

Z→ee W→ev $Z \rightarrow vv$ Entries / 0.13 CMS 9 Entries / 0.08 Data Single to 10⁶ 10^e CMS CMS Data Z+udscg Data tt √s = 8TeV. L = 18.9 fb VH 10⁷ √s = 8TeV, L = 18.9 fb⁻¹ VH Single top VV(udscg) (s = 8TeV, L = 18.9 fb⁻¹ VH tī Entries / (Z(e⁻e⁺)H(bb) Z + bb W+bb QCD Single top W(ev)H(bb) W + bb 10⁵ VZ(bb) 10^{5} $Z(vv)H(b\overline{b})$ W + b Low p_r(V) VV(udscg) Z + b VV(udscg) 10⁶ W + hLow p_r(V) Low p₊(V) W+udscg VH(bb) 125 GeV VZ(bb) W+udscg VZ(bb) Z+udscg Z + bb 10 💥 MC uncert. (stat.) 📃 10^{4} VH(bb) 125 GeV VH(bb) 125 GeV Z + bb 10⁵ Z + b Low pTB Z + b MC uncert. (stat.) MC uncert. (stat.) Z+udscg 10³ 10³ 10⁴ 10^{3} 10² 10² 10² 10 10 10 10-1 10-1 10 MC uncert. (stat. + syst.) 😳 MC uncert. (stat.) $\chi^2 / dof = 1.19$ 2Ē REAL MC unce $\chi^2 / dof = 0.93$ MC uncert. (stat. + syst.) $\chi^2 / dof = 0.69$ MC uncert. (stat. + syst.) KXXX MC uncert. (stat.) 2 1.5 1 0.5 2 2 1.5 1 0.5 2 0.6 0.8 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 -1 -0.8 -0.6 -0.4 6 0.8 1 BDT output -0.2 0 0.2 0.4 0.6 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 -1 -0.2 0 BDT output BDT output Entries / 0.13 0.0 40.0 10⁵ 10^e F CMS Entries / 0.05 10⁶ CMS Data Single top Data Z+udsca CMS Data tt √s = 8TeV, L = 18.9 fb⁻¹ $\sqrt{s} = 8$ TeV. L = 18.9 fb⁻¹ tī VH VH (s = 8TeV, L = 18.9 fb⁻¹ VH Single top VV(udscg) Z(e[•]e⁺)H(bb) High p_⊤(V) Entries / 10⁵ _ W(ev)H(bb) Single top W + bb W + bb QCD Z + bb 10⁴ 10⁵ Z(vv)H(bb) VZ(bb) VV(udscg) W+b W + b VV(udscg) Z + b High p_(V) High p_(V) W+udsco W+udscg VZ(bb) VH(bb) 125 GeV VZ(bb) 104 Z+udscg Z + bb Z + bb VH(bb) 125 GeV 10⁴ — VH(bb) 125 GeV MC uncert. (stat.) 10³ Z + b High pTB Z + b MC uncert. (stat.) MC uncert. (stat. Z+udscg 10³ 10^{3} 10² 10² E 10² 10 10 10 10-1 10 10 MC uncert. (stat.) $\chi^2 / dof = 0.91$ Stass MC un $\chi^2 / dof = 0.74$ MC uncert. (stat. + syst.) KXXX MC uncert. (stat.) 2 2 1.5 1 0.5 2 1.5 1 0.5 2₽ 2 1.5 1 0.5 2₽ -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -1 -0.8 -0.6 -0.4 -0.2 0.6 6 0.8 1 BDT output 0 0.2 0.4 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 BDT output -1 BDT output

Georges Aad – CPPM

GDR Terascale 2013

VH→bb @CMS - Systematics

		Event yield uncertainty	Individual contribution	Effect of removal
Source	Type	range (%)	to μ uncertainty (%)	on μ uncertainty (%)
Luminosity	norm.	2.2–2.6	<2	<0.1
Lepton efficiency and trigger (per lepton)	norm.	3	<2	< 0.1
$Z(\nu\nu)H$ triggers	shape	3	<2	< 0.1
Jet energy scale	shape	2–3	5.0	0.5
Jet energy resolution	shape	3–6	5.9	0.7
Missing transverse energy	shape	3	3.2	0.2
b-tagging	shape	3–15	10.2	2.1
Signal cross section (scale and PDF)	norm.	4	3.9	0.3
Signal cross section (p_T boost, EW/QCD)	norm.	2/5	3.9	0.3
Monte Carlo statistics	shape	1–5	13.3	3.6
Backgrounds (data estimate)	norm.	10	15.9	5.2
Single top quark (simulation estimate)	norm.	15	5.0	0.5
Dibosons (simulation estimate)	norm.	15	5.0	0.5
MC modeling (V+jets and tt)	shape	10	7.4	1.1

VBF H→bb @CMS

Georges Aad – CPPM

GDR Terascale 2013

H Width Through Interferometry

• $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ mass difference due to interference of nonresonant Higgs contribution

- Sensitive to the Higgs boson width
- Indirect measurement of the Higgs boson width at the LHC
- Need very accurate Higgs mass measurements
- Probably allows to have a an upper limit

Georges Aad – CPPM

GDR Terascale 2013