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7 from Inverse Compton on in halo

DM DM — uu, Einasto profile
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7 from Inverse Compton on in halo
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a.]y from DM annihilations in the Galactic Center
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[ Source Region

HESS has detected 7y-ray emission L Srotoaed Reton
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from annulus around GC.
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~ from DM annihilations in Satellite Galaxies
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~ from DM annihilations in Satellite Galaxies
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~ from DM annihilations in Satellite Galaxies

— Observed Limit
FER I'\“ I 1022 {—- Median Expected
I 68% Containment
95% Containment

4 years data:
weaker bound

(or 10 GeV DM
peeping out?)
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But, again: gamma ray constraints

(although: no radio, neutrino constraints)

DM - ee
NFW profile
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95.45% C.L. 95.45% C.L. 95.45% C.L.

The PAM!

LA and FERMI regions are in conilict

with these gamma constraints.









Secondary emission

b.) soft garr

Scutum Arm

mas from bremsstrahlung of ¢

Galactic Bulge Norma Arm

Sagittarius Arm ' . ' Local Arm
Sun .

- (very) relevant at low energy, in the disk and at the GC

~on ISM
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=> pbrem is the dominant energy loss for low energy e*!
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But: inner kpc of the Galaxy is denser
(and more uncertain)

SNB CMZ CNR

Stellar Nuclear Bulge Central Molecular Zone Circum-Nuclear Ring
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Bremsstrahlung gamma emission:




Bremsstrahlung gamma emission:




Bremsstrahlung gamma emission:

e* population

bremsstrahlung differential cross section




Bremsstrahlung gamma emission:

/ e* population
gas density i

bremsstrahlung differential cross section




Bremsstrahlung gamma emission:

/ e* population
gas density i

bremsstrahlung differential cross section
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The e* population is affected by bremsstrahlung
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The e* population is affected by bremsstrahlung
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The e* population is affected by bremsstrahlung
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The total y ray spectrum

y—ray emission y—ray emission
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- brem is dominant - uncertainty il is somewhat
- ICS 1is affected reabsorbed:

large Ngas |::> more loss and more emission




The total y ray spectrum

y—Tray emission y—ray emission
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The total y ray spectrum

y—Tray emission y—ray emission
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What if a signal of DM is already hidden
in Fermi diffuse v data?

Reg3

Reg3 (ULTRACLEAN), E, =129.6 GeV
Signal counts: 53.4 (4.260) 80.5 - 208.5 GeV

Einasto .- | Pp-value=0.85, X2qa=14.3/21

4.60 (3.30 with LEE)




What if a, signal of DM is already hidden
in Fermi diffuse 7 data?

Reg3 (ULTRACLEAN), E, =129.6 GeV

Reg3

Signal counts: 53.4 (4.260) 80.5 - 208.5 GeV
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What if a signal of DM is already hidden
in Fermi diffuse v data?

Reg3

Reg3 (ULTRACLEAN), E, =129.6 GeV
Signal counts: 53.4 (4.260) 80.5 - 208.5 GeV

Einasto .- | Pp-value=0.85, X2qa=14.3/21

4.60 (3.30 with LEE)

~ 4 year PTREP_Clean
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What if a signal of DM is already hidden
in Fermi diffuse v data?

m=30 GeV, bb
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A diffuse GeV excess
from around the GC



What if a signal of DM is already hidden
in Fermi diffuse v data?
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What if a signal of DM is already hidden
in Fermi diffuse v data?
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No, too few

(and we should have seen them elsewhere)

Best fit: 8 GeV, t* v, ~thermal ov and wrong spectra

A diffuse GeV excess
from around the GC




What if a signal of DM is already hidden
in Fermi diffuse v data?

m<30 GeV. o5 _ Objection: know your backgrounds!

/

m=30 GeV, c¢

-

m=8 GeV, 771

add

s 10 msec

“F low-E SgrA L ; pulsars
spectrum - -

i‘!;"!'\_"-' :l,.-'\

Still works... No, too few

(and we should have seen them elsewhere)

Best fit: 8 GeV, t* v, ~thermal ov and wrong spectra

A diffuse GeV excess
from around the GC

+ synchr from radio filaments
+ WMAP/Planck haze
+ Direct Detection...
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What if a, signal of DM is already hidden
in Fermi diffuse 7 data?

Fermi bubbles



What if a, signal of DM is already hidden
in Fermi diffuse 7y data?

Here there’s no excess
which cannot be

Rl explained in terms of
.i ordinary ICS.

1076

E? dN/dE (GeV/ém?/s/sr

Fermi bubbles



What if a, signal of DM is already hidden
in Fermi diffuse 7y data?

eyl Here there’s no excess
e SRER| VI ich cannot be
Bl explained in terms of

E? dN/dE (GeV/c._ m?/s/sr)

0.5 1.0 5.0 10.0 50.0100.0
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Ib|=10—20 deg.

Best fit:
~10 GeV, leptons, ~thermal ov
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Fermi bubbles
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E, (GeV)

HEssentially confirmed by:



What if a, signal of DM is already hidden
in Fermi diffuse 7y data?

eyl Here there’s no excess
e | T7Nich cannot be

il explained in terms of
.i ordinary ICS.

0.5 1.0 5.0 10.0 50.0100.0
E, (GeV)

E? dN/dE (GeV/c._ m?/s/sr)

Ib|=10—20 deg.

Best fit:
~10 GeV, leptons, ~thermal ov

Objection:
nothing tells you
that the input e*
spectrum stays
the same at high

and low latitudes

5.0 10.0 50.0100.0 (the ISRF t00, but one
E, (GeV) can better model that)

v - - -

Fermi bubbles

E? dN/dE (Gev,/cmz/s/sr)

HEssentially confirmed by:






Since the dawn of civilization, the desire to gaze, study and understand the mysteries hedged
in the astonishing beauty of the sky has been an unavoidable and innate prerogative of human
nature. In March 1610 Galileo Galilei published the Sidereus Nuncius, the first scientific work
based on telescope observations. Through the eye of this revolutionary instrument Galileo
was able to take the first steps in the exploration of a completely unknown world, describing
the results of his studies about the mountainous surface of the Moon, a myriad of stars never
seen before with the naked eye, and the discovery of four Erratic Stars that appeared to be
orbiting around the planet Jupiter.

After more than four hundred years, telescopes are becoming the most important scientific
instrument in astronomy and astrophysics, reaching a degree of technical perfection that
enables us to study in great detail the Universe. Among them, the Fermi Large Area Telescope
(LAT) [1] is devoted to the study of photons in the high energy region of gamma-rays, and

one of the most challenging goals of the mission is to shed light on the elusive nature of Dark
Matter (DM).

Many efforts have been made, for instance, to study and understand the nature of a

spatially extended excess, peaked at few GeV, found in the gamma-ray emission from the
Galactic center 2, 3, 4, 5, 6]. The signal can be explained by O(10) GeV DM annihilating
into 777, bb, or by model with dark forces [7].

Huang, Urbano, Xue 1307.6862
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Gamma rays are promising for DM searches,

but they are difficult.

environmental dC‘Pewdewae, backgrounds...
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spatially extended excess, peaked at few GeV, found in the gamma-ray emission from the
Galactic center 2, 3, 4, 5, 6]. The signal can be explained by O(10) GeV DM annihilating
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Gamma rays are promising for DM searches,
but they are difficult.

environmental dC‘Pewdewae, backgrounds...

S0 far only solid constraints and maybe some hint.

(Even the best smoking guns have proven to be a bit wet...)



