# **STEREO**

# Recherche de neutrinos stériles auprès du réacteur de l'ILL

Postdoc ENIGMASS 15 juillet 2013

LPSC : S. Kox, F. Montanet, J.S Réal, **A. Stutz** LAPP : D. Duchesneau, P. Del Amo Sanchez, H. Pessard LAPTH : P Serpico



Ces 20 dernières années ont constitué une période riche en succès expérimentaux dans le domaine de la physique des neutrinos

- Observation des oscillations de saveur avec différentes sources de neutrino, différentes techniques, couvrant un vaste domaine d'énergies et de distances
- Les résultats forment un ensemble cohérent avec des neutrinos disposant de 3 états de masse différents
- Le Modèle Standard Minimal est incomplet et nécessite une extension

Mais quelques anomalies ont été observées

- LSND, MiniBoone : apparition  $\overline{v}_{e}$  , 3.8  $\sigma$  LSND
- Gallex et Sage : disparition  $v_e$ , 2.9  $\sigma$
- Anomalie des neutrinos de réacteur : disparition d'  $V_{e}$  2.9  $\sigma$
- Elles pourraient s'expliquer par l'existence d'au moins un quatrième neutrino stérile de l'ordre de 1 eV
- Elles nécessitent une clarification expérimentale
- Livre blanc de la communauté : arXiv:1204.5379

### L' anomalie Gallium

Observation d'un déficit de neutrinos dans l'étalonnage des détecteurs de neutrinos solaires Gallex et Sage

- Détection :  $v_e$ + <sup>71</sup>Ga  $\rightarrow$  <sup>71</sup>Ge + e<sup>-</sup>
- Sources de v<sub>e</sub>: <sup>51</sup>Cr et <sup>37</sup>Ar
- Distances ≈ 1m, Energies ≈ 0.7 MeV

Renforcé par de nouvelles mesures de section efficace



R = 0.84  $\pm$  0.05  $\rightarrow$  Anomalie à 2.9  $\sigma$ 





### L'anomalie des neutrinos de réacteur

#### Réévaluation du spectre des neutrinos de réacteur

- Neutrinos de réacteurs
  - − Emis par désintégration β<sup>-</sup> des produits de fission → flux quasi pur en  $\bar{v}_e$  : 1 GWth ≈2 10<sup>20</sup>  $\bar{v}_e$ /s
  - − Détection par désintégration β inverse (IBD) :  $\overline{v}_e + p \rightarrow e^+ + n$
- Spectre des neutrinos émis
  - Mesures très précises du spectre d'e<sup>-</sup> des produits de fission faites à ILL σ=1.8 % Shrekenbach et al. 1982,85,89
  - Conversion  $e \rightarrow v_e$ 
    - Avant 2011 : utilisation de 30 spectres virtuels
    - Après 2011 : Utilisation des données nucléaires

→ Biais : ≈3 %

Mueller et al. 1101.2663 + confirmation indépendante par Huber, 1106.0687



- Spectre des neutrinos détectés : section efficace par fission
  - Nouveau spectre : + 3%
  - Correction off-équilibre : + 1%
  - Durée de vie du neutron,  $\sigma_{IBD} \simeq 1/\tau_n$ : + 1.5 %

 $\rightarrow \tau_n = 881,5 \pm 1.5 \text{ s}$  (PDG 2011)



Augmentation du taux de neutrinos prédit de 3-4 % par rapport aux calculs précédents

### L'anomalie des neutrinos de réacteur

### Réanalyse des 19 expériences à $L \le 100 \text{ m}$

- Ajustement avec un facteur de normalisation
- Prise en compte des corrélations entre expériences
- Déficit R= 0.927 ± 0.023

Anomalie des neutrinos de réacteur 3 σ Mention et al. 1101.2755

#### **Explications**

- Statistique ?
- Biais dans la prédiction du flux ?
  - Différents type de réacteur
  - Toutes les mesures dépendent de
    - la durée de vie du neutron
    - la mesure initiale du spectre d'électron
- Biais expérimental ?
  - Différentes techniques de détection
- Nouvelle physique à courte distance ?



arXiv:1204.5379

### Nouvelle oscillation vers un neutrino stérile ?

• Pas de couplage par interaction faible  $\rightarrow$  Visible uniquement par effet d'oscillation



### Analyse globale réacteurs SBL + Gallium

#### Réacteurs SBL + Gallium

- $|\Delta m^2| = 2.3 \pm 0.1 \text{ eV}^2$
- $sin^2(2\theta_{new})=0.17\pm0.04$
- non oscillation exclue à 3.6 σ



arXiv:1204.5379

- Déclenchement d'une forte activité dans la communauté neutrino
- De nombreux projets sont en préparation : accélérateurs, sources, réacteurs

# STEREO@ILL

### Les objectifs du projet STEREO@ILL

- Couvrir le contour de l'anomalie avec une très grande précision
- Proximité du réacteur très compact de l'ILL

- Signature non ambigüe de l'oscillation
  - Déformation du spectre en énergie et en distance
  - Analyse de forme indépendante de la normalisation (puissance, flux, normalisation)





• Utilisation d'une technologie éprouvée pour une prise de données en 2015

# STEREO@ILL

$$P_{\nu_e \rightarrow \nu_e} \left( E_{\nu_e}, L \right) = 1 - \sin^2 \left( 2\theta \right) \sin^2 \left( 1.27 \frac{\Delta m^2 L}{E_{\nu_e}} \right)$$

- Analyse robuste de l'oscillation
  - Observation de la déformation du spectre en énergie
  - Evolution de la phase avec la distance
- Conditions
  - Bonne résolution en distance (source + détecteur)
  - Bonne résolution en énergie
  - Point critique : bruit de fond







### Le réacteur de l'ILL

Ш.Г.

HFIR

ATR

NSBR

SONGS

#### Cœur compact

- Φ ≈ 40 cm, h ≈ 80 cm
- Un des plus compact au monde
- Evite de moyenner l'oscillation par la taille de la source RMS<sub>coeur</sub> = 24 cm << L<sub>osc</sub> = 3.2 m à 3 MeV
- Déplacement du barycentre 10 cm au cour d'un cycle perpendiculairement à l'axe du détecteur/réacteur

#### Cœur fortement enrichi en <sup>235</sup>U (93%)

- Spectre indépendant des effets d'évolution du combustible <sup>14</sup>
   E = 201.9±0.5 MeV/fission
- Spectre le mieux connu

#### Puissance : 57 MW

• 4 cycles de 50 jours par an ≈ 200 jours ON



### Le réacteur de l'ILL

### Plusieurs possibilités d'accès à très courte distance, mur du réacteur à 5 m

- B42 : expérience précédente à 8.78 m
- Niveau C
  - Axe du réacteur
  - Protection canal d'eau







Evaluation de STEREO par le conseil scientifique de l'ILL en avril 2013

 $\rightarrow$  Accord pour une installation au niveau C en PN3

Détection par désintégration  $\beta$  inverse dans du scintillateur dopé au Gd :

$$\overline{v}_{e} + p \rightarrow e^{+} + n$$

$$\downarrow \qquad \downarrow n + Gd \rightarrow Gd + \gamma s$$

$$e^{+} + e^{-} \rightarrow \gamma \gamma$$

- Seuil :  $\Delta + m_e = 1.804 \text{ MeV} (\Delta = M_n M_p)$
- E<sub>n</sub> ≈ 25 keV
- $E_{vis\approx} E_v \Delta + m_e \approx E_v 0.782 \text{ MeV}$

Signature en coïncidence temporelle :

- Signal prompt : Ionisation du positron + γ d'annihilation
- Signal retardé : capture du neutron sur Gd
  - Cascade de gammas, énergie totale ≈ 8MeV (>> radioactivité naturelle <sup>208</sup>Tl à 2.6 MeV)
- ΔT ≈ 15 μs (0.2% Gd)



### Le détecteur

### 2m<sup>3</sup> de scintillateur liquide dopé à 0.2% Gd en masse

- Cible + capture du neutron
- 5 cellules de 40 cm de profondeur le long de la direction du coeur
  - 90 cm haut, 1.10 m de large
  - Détermination passive de la position du vertex  $\overline{V_e}$
  - Profondeur comparable à la taille du cœur
  - $\rightarrow \delta L_{osc} = 32 \text{ cm} (1\sigma)$

#### Couronne 30 cm scintillateur non dopé (1.7 m<sup>3</sup>)

- Améliore la résolution en énergie et l'efficacité neutron
- Veto actif pour le bruit de fond externe

### **Collection lumière**

- Par le dessus avec 44 PMTs 10" (50% surface)
- Buffer en acrylique 20 cm
  - Homogènéité de la réponse de la cellule dans tout le volume
- Contact optique Buffer/PMT avec huile minérale





# La réponse en énergie

- Réponse en énergie estimée par simulation Geant4
  - simulation adaptée de DC et Nucifer
  - modèle de scintillation détaillé et validé
- ≈ 460 pe /MeV (5%), Effet haut/bas ≈3 % / m
- Résolution dominée par échappement 511 keV
- Réponse homogène centre/bord grâce à la couronne externe  $\rightarrow \delta E/E \approx 10\%$  e<sup>+</sup> 2 MeV ( $\approx 3.02$  MeV E<sub>déposée</sub>)



- Calibration individuelle de chaque cellule avec des sources
  - Dispositif automatique de déplacement
  - Précision de 2% sur l'échelle d'énergie
- Contrôle du gain des PMTs et transmission optique
  - système d'injection de lumière par LED et fibres
  - Précision de 1% sur la stabilité du détecteur





Cible + couronne e+ de 2 MeV



### L'efficacité de détection neutron

- ≈ 90 % des captures sur Gd
- Temps de capture ≈ 15 μs Gd vs 200 μs H
- Cascade de gammas d'énergie totale 8 MeV
  - ≈ 30 cm dans le scintillateur
  - Couronne externe réduit les fuites de γ
- Efficacité de détection moyenne
  - 64 % pour E<sub>dep</sub> > 5 MeV
  - 51 % pour E<sub>dep</sub> > 6 MeV
- Effet centre/bord
  - Cellule centre : 66 %
  - Cellule bord : 62 %
- Etalonnage avec source Am-Be
  - Corrélation neutron et γ de 4.4 MeV
  - Précision 2 % sur l'efficacité de détection



## Les bruits de fond

#### Bruit de fond corrélé au réacteur

- Gammas et neutrons thermiques -> Bruit de fond fortuit
- Neutrons rapides (signal prompt = proton de recul + signal retardé = capture du neutron)
  - bruit de fond corrélé  $\rightarrow$  Doit être rendu négligeable
- Protection par des blindages lourds
  - la tenue de la dalle est suffisante 10 à 20 t/m<sup>2</sup> (étude ILL 2010)

#### Bruit de fond indépendant du réacteur

- Neutrons rapides induits par interactions des muons -> bruit de fond corrélé
- Protection par le canal d'eau et un véto muon
- Radioactivité des matériaux -> bruit de fond fortuit
- Test des matériaux

#### Le bruit de fond fortuit est mesuré en ligne avec une grande précision

- $R_p \times R_d \times \Delta t < R_v$
- Signal prompt :  $E_{dep} > 2 \text{ MeV} (\gamma s) \rightarrow Rp < 200 \text{ Hz}$
- Signal retardé :  $5 < E_{dep} < 10 \text{ MeV}$   $\rightarrow R_d < 1 \text{ Hz}$
- •

#### Le bruit de fond corrélé est mesuré pendant les périodes de réacteur OFF

- OFF  $\approx$  45 % du temps
- Corrélés avant PSD < 5.10-3 Hz

# Les blindages

#### Blindage passif

- Pb 10 cm
- Mur frontal Pb 10 cm coté réacteur
- Polyéthylène boré 15 cm faces latérales 20 cm en bas, 30 cm en haut

#### Blindage actif

- Veto muon : Cerenkov à eau 20 cm
- Couronne externe 30 cm LS



#### Aménagement de la casemate PN3 pour STEREO

• Opportunité offerte par l'arrêt prolongé du réacteur de l'ILL du 9 aout 2013 -> juin-juillet 2014

#### Validation des protections nécessaires

- Mesures sur sites avec détecteurs Ge et <sup>3</sup>He : 4 campagnes depuis juin 2012
- Comparaison avec des expériences similaires ILL-1@B42 Nucifer@OSIRIS
- Simulations Geant4 MCNPX

### Aménagement de la casemate pour STEREO

Objectif : protéger le détecteur des sources de bruit identifiées

- Installation d'un bouchon dédié pour le tube H7
- Couverture des surfaces des casemates en B4C 5mm
- Murs de plomb devant les sources identifiées (20 cm)

ILL-1 : les taux de comptage single étaient indépendants de l'état du réacteur



- Mise en place durant le grand arrêt du réacteur
- Profiter des premiers cycles pour valider et optimiser l'installation des blindages avant d'installer le détecteur

| 1 | 10 cm Pb à compléter                             |
|---|--------------------------------------------------|
| 2 | 10 cm Pb : 5 cm existant + 5 cm                  |
| 3 | 10 cm Pb existant prévoir une possible extension |
| 4 | Prévoir possibilité d'ajouter 5 cm Pb            |
| 5 | 15 cm Pb : 10 cm à compléter + 5 cm + marge de 5 |
|   | cm                                               |

## Implantation sur site

### Contraintes d'installation

- Sécurité sismique
- Sécurité incendie
- Dossier ASN à déposer fin 2013
- Travail en cours avec expert incendie et ingénieure de sécurité ILL

### Modification du détecteur par rapport au projet initial

- → Distance STEREO/réacteur : 10 m
- → Largeur de la cible réduite de 1.1 à 0.9 m
- $\rightarrow$  6 cellules au lieu de 5

### **Caractéristiques principales de STEREO**

| Puissance du réacteur                 | 57 MW                                  |
|---------------------------------------|----------------------------------------|
| $\sigma$ ( <sup>235</sup> U) /fission | 6.69 10 <sup>-43</sup> cm <sup>2</sup> |
| Distance moyenne au cœur              | 10 m                                   |
| Nombre de protons cibles              | 1,3 10 <sup>29</sup>                   |
| Seuil Evis à 2 MeV ( $E_v > 2.8$ MeV) | 81 %                                   |
| Efficacité neutron (Edep > 5 MeV)     | 64 %                                   |
| Temps mort                            | 5 %                                    |
| δΕ/Ε @ 2 MeV                          | 10 %                                   |
| δL evt by evt                         | 32 cm                                  |

Signal attendu 480 v/ jrs Challenge : S/B > 1.5 (≈ ILL-1)



Phys. Rev. D 24.1097 1981



# Sensibilité

### • 300 jours de réacteur ON - 160 jours de OFF - S/B= 1.5

#### Analyse de forme



#### **Erreurs systématiques**

- Spectre de fission 0.7 -> 4 %
- Magnétisme faible (E-1.0)\*1.0%/MeV
- Distance evt/evt δL = 32 cm
- Calibration énergie sources 2.0 %
- Monitoring 1%

Analyse de forme + norme



#### Erreurs systématiques normalisation 3.5%

- N<sub>p</sub> 0.5%
- Spill in Spill out 1%
- Efficacité de détection 2%
- Puissance thermique 2.0 %
- Spectre de fission 1.8 %

# Calendrier

- Aout 2013- mi juin 2014 : Grand arrêt réacteur de 10 mois
  - Remplacement bouchon-collimateur
  - Couverture B4C des casemates PN3 et IN20
  - Montage des murs de plomb suplémentaires
- juin 2014 : 1 cycle court réacteur ON de 1 mois
  - test de bruit de fond de la casemate aménagée
- 3 cycles jusqu'à fin 2014
  - Installation de STEREO : blindages et détecteur
  - Tests de bruit de fond à chaque étape
- 2 cycles en 2015 pour comissionning
- 6 cycles d'avril 2105 à fin 2016 : Prise de données effectives
- Début 2017 : changement du tube H6-H7

# **Répartition des taches**

| Partenaires<br>(nb Phys. permanents) | Tâches                                                                                                                                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CEA/Irfu (7)                         | Coordination du projet<br>Conception et réalisation du détecteur interne<br>Calcul du spectre neutrino                                    |
| IN2P3/LPSC (4)                       | Veto muon<br>Electronique, acquisition de données et contrôle lent<br>Fabrication et montage du blindage<br>Coordination de la simulation |
| IN2P3/LAPP (2)                       | Dispositif de calibration<br>Conception du blindage<br>Fabrication de la structure du blindage                                            |
| MPIK-Heidelberg (2)                  | Scintillateur liquide, système de remplissage, PMTs                                                                                       |
| ILL (4)                              | Conception et réalisation du bouchon<br>Etudes de sécurité<br>Aménagement de l'aire expérimentale, installation sur site                  |
| Casablanca Univ. (2)                 | Système d'injection de lumière                                                                                                            |

### Les moyens

### Demande ANR 2013

- Investissement + Missions
- 2 Postdocs (LAPP et IRFU)

→ Financement à 85 % par l'ANR Recommandation d'un seul postdoc et réduction du budget blindage

→ Complément demandé à l'IN2P3 et à l'Irfu Présentation du projet au CS de l'IN2P3 en juin 2013

Demande d'un Postdoc pour le LPSC au Labex ENIGMASS

- Implication dans les tâches dont le LPSC a la responsabilité :
  - Conception, réalisation et test du détecteur veto muon
  - Simulation des performances du détecteur et préparation des programmes d'analyse de données
  - Test de l'électronique et participation au soft d'acquisition de données
- Installation à l'ILL et analyse des données
  - Rôle majeur du fait de la proximité du LPSC et du site de l'ILL
- Collaboration régulière avec le LAPP et interaction à plus long terme avec le LAPTH pour l'implication théorique des résultats
- Essentiel pour l'expérience
- Contribution visible

- STEREO propose une mesure de précision à moins de 10 m du cœur compact du réacteur de recherche de l'ILL de Grenoble.
- La recherche d'une distorsion du spectre en énergie le long de l'axe du détecteur offre une signature claire d'une possible nouvelle oscillation, indépendante des paramètres du réacteur.
- Le calendrier d'installation proposé et la sensibilité de la mesure offrent un potentiel de découverte élevé.
- Le projet STEREO fait partie des activités du pôle neutrino d'ENIGMASS et la demande de postdoc est faite en synergie avec la demande ANR (LAPP/LPSC/ IRFU)
- Un postdoc ENIGMASS est essentiel pour mener à bien ce projet expérimental dans le calendrier proposé, il offre aussi une très grande visibilité au candidat.