
git tutorial

Sébastien Brochet1
1Institut de Physique Nucléaire de Lyon – Université Claude Bernard Lyon 1

July 9, 2013

What’s git?

DVCS: distributed version control system
Allow you to:

Keep track of changes in your code
Document those changes
Share your code / Collaborate with others
a lot more!

Git tutorial Sébastien Brochet 1 / 27

git vs CVS/SVN

Right now, CMS uses CVS as VCS. Even if it (sort of) works, CVS has
some major drawbacks:

One central server keeps all the data. If it crashes, everything is lost!
(backup . . .)
You absolutely need an Internet connection: no work on train or plane
Branching and tagging are inefficient.
It’s slow!

git fixes all these problems:
It’s distributed: all the history is stored locally (ie, your computer).
No Internet connection required: since everything is local, you can
commit whenever you want.
Branching / merging are cheap and very fast.
It’s very (very) fast. A diff is instantaneous in git (takes sometines
minutes on CVS . . .)

Git tutorial Sébastien Brochet 2 / 27

git vs CVS/SVN

If your history is stored locally, how do you share your code?

You can also have a central server on git:

Your history is still stored locally
You only need Internet access when you pull from or push to the central
server!

Best of the two worlds:

You have everything you need to work (full history, commit, branching,
merging, . . .) locally
You can collaborate with others using the central server: when you
want, you can sync your work with the central server (ie, retrieve other’s
work (pull) or send your work (push))

Git tutorial Sébastien Brochet 3 / 27

git vs CVS/SVN

If your history is stored locally, how do you share your code?
You can also have a central server on git:

Your history is still stored locally
You only need Internet access when you pull from or push to the central
server!

Best of the two worlds:

You have everything you need to work (full history, commit, branching,
merging, . . .) locally
You can collaborate with others using the central server: when you
want, you can sync your work with the central server (ie, retrieve other’s
work (pull) or send your work (push))

Git tutorial Sébastien Brochet 3 / 27

git vs CVS/SVN

If your history is stored locally, how do you share your code?
You can also have a central server on git:

Your history is still stored locally
You only need Internet access when you pull from or push to the central
server!

Best of the two worlds:
You have everything you need to work (full history, commit, branching,
merging, . . .) locally
You can collaborate with others using the central server: when you
want, you can sync your work with the central server (ie, retrieve other’s
work (pull) or send your work (push))

Git tutorial Sébastien Brochet 3 / 27

git server workflow

push

pull

push

pull

Central server

User 1 User 2

Git tutorial Sébastien Brochet 4 / 27

Key differences between CVS and git

Same goal, different philosophy:
Atomic operations: operations either fail or succeed, no inconsistent
state.
Very important: changesets (commits) refers to the whole project, and
not to a single file like CVS. It is so very easy to revert a change (you
don’t have to track every single file you have changed like in CVS, just
revert the commit).
Commit messages are mandatory: an empty message is not allowed. A
convention exists between git users: commit messages are expected to
start with a single line summarizing the change, then an empty line,
followed by a more detailed description of the changes.
Each commit is identified by a commit hash, and not a revision number.
The commit hash is a SHA-1 hash (like
bfc7747c4cf67a4aacc71d7a40337d2c3f73a886) built using all files
in the project.

Git tutorial Sébastien Brochet 5 / 27

History is everything

History is everything: the most important thing for git is keeping
track correctly of the history of your project.
git will never allow an operation that results in a loss of history to the
pushed centrally!
Example:

You change a lot of files, introducing a bug. You commit, and push your
changes centrally.
Someone notice there’s a bug, and knows that your commit is
responsible of it.
Instead of looking at each change separately, you prefer to revert (ie,
remove) the commit.
An easy way for git is simply remove the commit from the history.
That’s not what is done: git never edit history. Instead, a new commit is
added at the top of the history, with the exact opposite of the commit to
remove.

Git tutorial Sébastien Brochet 6 / 27

Setup your identify and your text editor

git needs to know who you are!
You need to configure your identify only once, on each computer you’ll
use (this configuration is stored either at repository level or in your
home)

$ git config --global user.name "Sébastien Brochet"
$ git config --global user.email "s.brochet@ipnl.in2p3.fr"

git uses UTF-8! Say yes to accentuated letters, Cyrillic or Chinese
characters, . . . !
You’ll also need a text editor for your commit message. By default, git
use Vi, but you can change that. For example, to use emacs, simply run

$ git config --global core.editor emacs

Git tutorial Sébastien Brochet 7 / 27

Create a new repository

Create a new repository

$ mkdir project
$ cd project/
$ git init

Clone an existing project

$ git clone "https://github.com/cms-sw/cmssw.git"
$ cd cmssw

Git tutorial Sébastien Brochet 8 / 27

File states

Untracked : this file is unknown to git and not managed

Unmodified / Committed : no modification to this file
Modified : file modified, but not taken into account on the next commit
Staged : file added, deleted, moved or modified ; will be taken into
account on next commit.

Git tutorial Sébastien Brochet 9 / 27

File states

Untracked : this file is unknown to git and not managed
Unmodified / Committed : no modification to this file

Modified : file modified, but not taken into account on the next commit
Staged : file added, deleted, moved or modified ; will be taken into
account on next commit.

Git tutorial Sébastien Brochet 9 / 27

File states

Untracked : this file is unknown to git and not managed
Unmodified / Committed : no modification to this file
Modified : file modified, but not taken into account on the next commit

Staged : file added, deleted, moved or modified ; will be taken into
account on next commit.

Git tutorial Sébastien Brochet 9 / 27

File states

Untracked : this file is unknown to git and not managed
Unmodified / Committed : no modification to this file
Modified : file modified, but not taken into account on the next commit
Staged : file added, deleted, moved or modified ; will be taken into
account on next commit.

Git tutorial Sébastien Brochet 9 / 27

File states

Untracked : this file is unknown to git and not managed
Unmodified / Committed : no modification to this file
Modified : file modified, but not taken into account on the next commit
Staged : file added, deleted, moved or modified ; will be taken into
account on next commit.

Git tutorial Sébastien Brochet 9 / 27

Create a file

$ touch README # README status: untracked

Use git status to have an overview of the states of all files in the
project:

$ git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
README

Git tutorial Sébastien Brochet 10 / 27

Add a file

$ git add README # README status: untracked → staged

$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: README
#

README is ready to be committed

Git tutorial Sébastien Brochet 11 / 27

Your first commit

$ git commit # The editor pops up (usually vim) ; enter the commit
message, save and quit (:wq for vim), or

$ git commit -m "My first commit"
[master (root-commit) bad13af] My first commit
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 README

You can see the hash of your commit (bad13af), and what’s changed
(+1 file, no insertion nor deletions)
To see the history, use git log

$ git log
commit bad13af1848f716e434f7c9ad8bfd452826f0cd4
Author: Sébastien Brochet <s.brochet@ipnl.in2p3.fr>
Date: Mon Jul 8 10:07:26 2013 +0200
#
My first commit

Git tutorial Sébastien Brochet 12 / 27

Edit file

$ echo "Hello world" > README # README is now modified
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working

directory)
#
modified: README
#
no changes added to commit (use "git add" and/or "git commit -a")

To see the differences before committing, use git diff

$ git diff
diff --git a/README b/README
index e69de29..802992c 100644
--- a/README
+++ b/README
@@ -0,0 +1 @@
+Hello world

Git tutorial Sébastien Brochet 13 / 27

Edit file

$ git add README # Stage file for commit
$ git commit -m "Blabla into README" # Commit staged files
[master 669d569] Blabla into README
1 file changed, 1 insertion(+)

$ git log
commit 669d5697f9e540653d7cd25eab4f4e411c7ace1b
Author: Sébastien Brochet <s.brochet@ipnl.in2p3.fr>
Date: Mon Jul 8 10:22:18 2013 +0200
#
Blabla into README
#
commit bad13af1848f716e434f7c9ad8bfd452826f0cd4
Author: Sébastien Brochet <s.brochet@ipnl.in2p3.fr>
Date: Mon Jul 8 10:07:26 2013 +0200
#
My first commit

Git tutorial Sébastien Brochet 14 / 27

Show commit content

To show the content of a commit, use git show

$ git show HEAD
commit 669d5697f9e540653d7cd25eab4f4e411c7ace1b
Author: Sébastien Brochet <s.brochet@ipnl.in2p3.fr>
Date: Mon Jul 8 10:22:18 2013 +0200

Blabla into README

diff --git a/README b/README
index e69de29..802992c 100644
--- a/README
+++ b/README
@@ -0,0 +1 @@
+Hello world

Note: HEAD is a special alias for the current changeset. In our case,
HEAD is 669d5697f9e540653d7cd25eab4f4e411c7ace1b

Git tutorial Sébastien Brochet 15 / 27

Summary of commands

git help <cmd>: print help about <cmd>
git init

git clone

git status

git add <file>

git rm/mv <file> [<to>]

git commit

git log

git diff

Git tutorial Sébastien Brochet 16 / 27

Interaction with the central server

Now that you have some commits, you want to share them with your
collaborators.
All you need to do is to push your changes to the remote server.
First, let check the remote server configured for your project

$ git remote

If nothing is returned, you have no remote server configured. Let’s add
one (more details on how to create remote repository on github later)

$ git remote add origin https://github.com/blinkseb/ipnl-tuto.git #
origin is the name of the remote server (you can have as many
remote as you want!)

$ git remote
origin
$ git remote show origin
* remote origin

Fetch URL: https://github.com/blinkseb/ipnl-tuto.git
Push URL: https://github.com/blinkseb/ipnl-tuto.git
HEAD branch: (unknown)

Git tutorial Sébastien Brochet 17 / 27

Interaction with the central server

You can now push your changes to the remote origin

$ git push -u origin master
Counting objects: 6, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (6/6), 466 bytes | 0 bytes/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To https://github.com/blinkseb/ipnl-tuto.git
* [new branch] master - > master
Branch master set up to track remote branch master from origin.

The -u flags is needed only for the first push. It sets the remote
origin as the default one for the next push and pull
origin is the name of the remote
master is the name of the branch to push. The default branch is
always named master.

Git tutorial Sébastien Brochet 18 / 27

Interaction with the central server

To retrieve the changes from remote, use git pull

$ git pull origin master
Already up-to-date.

Very important: when pulling changes from remote, all the files
changed remotely must be in a unmodified state locally, otherwise
the pull will fail!.

Either commit the modified files, stash them, or revert them to their
initial state.

You may have merge conflicts if the same part of the file has been
modified locally and remotely. It’s off-topic, see here for more details.

Git tutorial Sébastien Brochet 19 / 27

http://git-scm.com/book/ch3-2.html#Basic-Merge-Conflicts

Interaction with the central server

The push will fail if there were push done by someone else between
your last pull and your push. This will lead to the following scenario:

$ git push origin master
To https://github.com/blinkseb/ipnl-tuto.git
! [rejected] master → master (fetch first)
error: failed to push some refs to

’https://github.com/blinkseb/ipnl-tuto.git’
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first merge the remote changes (e.g.,
hint: ’git pull’) before pushing again.
hint: See the ’Note about fast-forwards’ in ’git push --help’ for details.

git tells you it refuses to push because “the remote contains work that
you do not have locally”. All you need to do is to pull in order to
incorporate remote changes with yours, and then push

$ git pull --rebase origin master
$ git push origin master

Git tutorial Sébastien Brochet 20 / 27

A note about rebase

On the previous slide, I used git pull --rebase origin master.
Notice the --rebase flag.
If you have done some commits after your last pull, always use the
--rebase flag for git pull!
rebase rebuilds your local history, putting all your local commits done
after your last pull on top of the history, avoiding the need of a merge
commit.
VERY IMPORTANT: NEVER EVER rebase commits that you have
pushed to a remote repository! Rebase only local commits!
More details about rebase here

Git tutorial Sébastien Brochet 21 / 27

http://git-scm.com/book/en/Git-Branching-Rebasing

Branching and tagging

A very powerful feature of git is cheap branching. A branch can be
seen as a branch in the history tree
Let’s see a concrete example. Suppose you work on an analysis which
need to be compatible for CMSSW 5.3 and for CMSSW 6.2. You’ll
need two branches, master for development on CMSSW 6.2, and
testing for CMSSW 5.3.
You can create a branch with git branch

$ git branch testing

See that the branch testing has been created,
and points to the same commit as master.
You are still on the master branch! (see where
HEAD points to)

Git tutorial Sébastien Brochet 22 / 27

Changing branch
In order to change the current active branch, use git
checkout

$ git checkout testing

Note that now, HEAD points to the testing branch!
If now you commit some changes to this branch,
checkout the master branch, and commit some changes,
the history diverges.

Git tutorial Sébastien Brochet 23 / 27

Merge branch

Suppose you created a branch new_feature to develop a new feature
of your analysis. You broke the code, but it was on your own branch, so
everyone else was able to use the analysis using the master branch.
Your work is done: everything works at it should. You want now to
merge the branch new_feature into master so everybody can enjoy
your new feature.
It’s done very easily using git merge

$ git checkout master # Be sure to be on the master branch
$ git merge new_feature # Merge the new_feature branch inside the

active branch (master)

Every commit on new_feature is now part of master. You can safely
remove your develop branch

$ git branch -d new_feature # git won’t delete the branch if it has
not been merge previously!

Git tutorial Sébastien Brochet 24 / 27

Some words about tagging

Tagging is another great and cheap feature of git. You can assign an
alias to a commit hash. It’s very useful to identify a precise moment in
the lifetime of your analysis for example (ie, version of code used to
launch a PAT production, or for example, v1 of software released to
public, etc.)
To tag, simply use git tag

$ git tag -a my_tag_name # Create a annotated tag. You’ll need to
enter a tag message

$ git push --tags # Push the tags to the default remote

Git tutorial Sébastien Brochet 25 / 27

Github

Github is a social collaboration website, where users can create an
unlimited number of public git repositories, for free.
CMSSW code have been migrated from CERN’s CVS to github:
https://github.com/cms-sw/cmssw
In order to keep contributing, you’ll need a github account. Please
register!
Don’t forget to create your public / private keys for your github
account. More details here
I’ve created a github organization for the IPNL CMS group:
https://github.com/organizations/IPNL-CMS. The plan is to have a
centralized place where all the tools used by the group can be stored.
Send me an email with your github account so I can add you as a
member!

Git tutorial Sébastien Brochet 26 / 27

https://github.com/cms-sw/cmssw
https://help.github.com/articles/generating-ssh-keys
https://github.com/organizations/IPNL-CMS

Various links

git website: http://git-scm.com/

Pro Git, a free book on git, available in French or English:
http://git-scm.com/book

TryGit, an interactive tutorial to learn git: http://try.github.io/

Github: https://github.com/

A real world example of git power: the linux kernel!
https://github.com/mirrors/linux

Git tutorial Sébastien Brochet 27 / 27

http://git-scm.com/
http://git-scm.com/book
http://try.github.io/
https://github.com/
https://github.com/mirrors/linux

