

JRJC 2013 - Neutrino Physics session

Alessandro Minotti (supervisor Cécile Jollet) IPHC - Strasbourg

Anti- V_{e} disappearance in reactor experiments

The $V_{e}\left(a n t i-V_{e}\right)$ survival probability has 2 factors coming into play at different L / E values. By exploring the medium baseline ($\mathrm{L} / \mathrm{E} \approx 0.5 \mathrm{Km} / \mathrm{MeV}$) one have access to the θ_{13} value (middle term of the PMNS matrix).
$U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right)\left(\begin{array}{ccc}c_{13} & 0 & s_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i \delta} & 0 & c_{13}\end{array}\right)\left(\begin{array}{ccc}c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1\end{array}\right) \quad P_{e e} \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{13}^{2} L}{4 E_{v}}\right)-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta m_{21}^{2} L}{4 E_{v}}\right)$

Reactor neutrinos:

- Good flux (I GWth $=2 \cdot 10^{20} \mathrm{~V} / \mathrm{s}$)
- Well known flux (error of the few \%)
- Pure source of anti- V_{e} (no contamin.)
- Energy of few MeV (<E> $\approx 3 \mathrm{MeV}$)

Reactor neutrinos experiments
Detection principles: Inverse β decay (IBD) \Rightarrow Prompt-Delayed coincidence
Disappearance experiment: Compare the number of interacting neutrinos with the expected one, globally (rate analysis) or per energy bin (rate+shape)

IBD signature:

- Prompt signal e+ ionization + annihilation $\rightarrow \gamma s(1-8 \mathrm{MeV})$
- Separation time n thermalization $\rightarrow \Delta t(\sim 30 \mu s$ for $G d)$
- Delayed signal n capture $\rightarrow \gamma \mathrm{s}(\sim 8 \mathrm{MeV}$ on Gd$)$

The Double Chooz experiment

Far detector only (4/201 I-5/20/4):

- Flux deficit and spectral distortion measured
Two identical detectors (5/2014):
- Flux uncertainty cancellation

Gamma Catcher:

I2 tons un-doped scintillator in acrylic vessel.
Detect γ s escaping the IT.

Buffer:

80 tons non scintillating mineral oil and 390 IO" PMTs in stainless steel vessel.

The Double Chooz experiment

Detection strategy
Far detector only (4/2011-5/2014):

- Flux deficit and spectral distortion measured
Two identical detectors (5/2014): - Flux uncertainty cancellation

Other tools

Outer Veto:
Array of plastic scintillator strips ($13 \mathrm{~m} \times 7 \mathrm{~m}$).Vetoes cosmic $\mu \mathrm{s}$.

Inner Veto:
70 tons un-doped liquid scintillator and 78 I0" PMTs in stainless steel vessel. Cosmic μ s veto and spallation neutrons shielding.

Chimney

Target shielding:
15 cm steel external shielding
Rock shielding:
300/I20 MWE rock overburden for far/near detector

Double Chooz signal selection and background

Criteria to identify a neutrino event:

- Prompt-delayed time coincidence ($0.5 \mu \mathrm{~s}<\Delta \mathrm{t}<\mathrm{I} 50 \mu \mathrm{~s}$)
- Energy selection in Prompt \& Delayed signals
- Selections on Outer Veto \& Inner Veto signals

Remaining backgrounds:
Accidental coincidences between radioactivity γs and spallation neutrons captures.
Correlated, i.e. physics events simulating the IBD e ${ }^{+}$- n coincidence (scheme)
I. Stopping $\mu \quad$ (in the chimney)
2. Fast neutron (isotropic)
3. Cosmogenic $\beta=n$ (isotropic)

Correlated bkg scheme

Fast neutrons (and possibly stopping μ) can be selected with the Pulse Shape Discrimination (PSD) using the difference in the Pulse Shape between positrons and protons (muons).

Organic scintillators and pulse shape discrimination (PSD)

Organic scintillator's behavior:
I. Incident radiation populates vibrational states of SI level.

2. Non radiative transfer of energy from vibrational states to fluorescent state.
3. Decay of fluorescent state: direct (fast) or via triplet state (slow).

The global waveform profile of the scintillation light (Pulse Shape) reflects the scintillation process:

- Initial rise ($\mathrm{T}_{\mathbf{\prime}}$)
- Two components fall (fast T_{2}, slow T_{3}).

Excited state population depends on $\mathrm{dE} / \mathrm{dx}$: higher slow component (T_{3}) for heavy particles (protons, alphas, ions) than for light particles (electrons, positrons, photons).

The Pulse Shape Discrimination (PSD) aims to disentangle $\boldsymbol{\alpha}$ and protons from e^{+}, e^{-}and γs by using this difference.

My analysis in Double Chooz: PSD on the correlated background.
Not trivial: PXE+PPO (DC scintillator) has shorter $\mathrm{T}_{2,3}$ than LAB or PC.

Scintillator	$T_{1}[\mathrm{~ns}]$	$\mathrm{T}_{2}[\mathrm{~ns}]$	$\mathrm{T}_{3}[\mathrm{~ns}]$
$\mathrm{PC}+1.5 \mathrm{~g} / \mathrm{PPO}$	3.57	176	59.9
PXE $+1.5 \mathrm{~g} / \mathrm{PPO}$	3.16	7.70	34.0
$\mathrm{LAB}+1.5 \mathrm{~g} / \mathrm{PPO}$	7.46	22.3	115.0

Pulse Shape construction in Double Chooz

For this analysis Pulse Shape (PS) = Time distribution of PMTs light pulses corrected for the TOF (single event).

Pulse Shape construction:

- Each pulse is fitted to get a starting time
- Times are corrected for the TOF and the PMT transit time
- Times are combined together in a global light profile

This Pulse Shape is sensitive to:

- Particle nature (α, p vs $\mathrm{e}^{+}, \mathrm{e}^{-}, \gamma$)
- Reconstructed vertex (TOF correction)

Cumulative PS (sum of all PSs) of a sample = high statistics representation of the mean PS behavior.

By comparing cumulative PSs of different samples we can look for differences (differences \rightarrow discrimination?)

Pulse Shape distributions

We study a cumulative Pulse Shape of a Stopping Muons and Fast Neutrons samples. By using the Outer Veto (OV) trigger and considering that Stopping Muons have short Prompt-Delayed Δt, we select these raw samples:

Neutrinos	OV not triggered	(prompt $=\mathrm{e}^{+}$, delayed $=\mathrm{Gd} \gamma \mathrm{s}$)
«Stopping $\mu »$	OV triggered $\& \Delta \mathrm{t}<10 \mu \mathrm{~s}$	(prompt $=\mu$, delayed $=$ Michel electron)
«Fast neutrons»	OV triggered $\& \Delta \mathrm{t}>10 \mu \mathrm{~s}$	(prompt $=$ recoil p, delayed = Gd $\gamma \mathrm{s}$)

${ }^{60} \mathrm{Co}$
Calibration source run ($2.5 \mathrm{MeV} \gamma \mathrm{s}$) added in both prompt and delayed

- Recoil protons i.e. « Fast Neutrons » prompt have a different PS than e+ and ${ }^{60} \mathrm{Co}$ (expected).
- « Stopping $\mu »$ have a different PS both on prompt and on delayed (unexpected, vertex).

We use this differences to discriminate Stopping Muons (Fast Neutrons) in the neutrino sample.

Stopping Muons separation via Gatti method

The Gatti method [Nuclear Electronics, vol .2, pp. 265-276, IAEA Wien (1962)] is designed to perform PSD:

- Given 2 reference PSs α and β, we build a bin per bin weight $P_{i}=\frac{\left(\overline{\alpha_{i}}-\overline{\beta_{i}}\right)}{\left(\overline{\alpha_{i}}+\overline{\beta_{i}}\right)}$, $\left(\alpha_{i}\right.$ and $\beta_{i}=$ pulses in a t_{i} bin $)$
- Given a PS S (bin content S_{i}), the Gatti discrimination parameter is $\mathbf{G}_{\mathbf{s}}=\boldsymbol{\Sigma}_{\mathbf{i}} \mathbf{P}_{\mathbf{i}} \mathbf{S}_{\mathbf{i}}$ (positive α-like event, negative β-like)

We use the Gatti method to separate Stopping $\mu \mathrm{s}$. References:

- Neutrino Delayed cumulative Pulse Shape ($G>0$)
- "Stoping Muon" Delayed cumulative PS (G < 0)

The Gatti analysis applied to "Stoping Muons" and "Fast Neutrons" separate the two populations.

Vertex position correction using Pulse Shape

Stopping Muons' Pulse Shape is due to vertices reconstructed in the target while they must be in the chimney.

Re-computing the Pulse Shape using a vertex inside the chimney, Stopping Muons (Gatti < 0) generally have a Pulse Shape more similar to the ${ }^{60} \mathrm{Co}$ cumulative PS.

Approach extension: scan the whole detector volume, re-compute the Pulse Shape for each vertex position and search the best agreement with the the ${ }^{60} \mathrm{Co}$ reference using a likelihood approach.
Position of maximum likelihood = new alternative vertex.

For most $(\geqslant 70 \%)$ of the Stopping Muons (Gatti <0) this new vertex is in the chimney. By changing the vertex with the new one and re-running the Gatti analysis, the new Gatti value is positive.

Ortho-Positronium formation

Possibility of o-Ps signature in Double Chooz

DC neutrinos' prompt event $=\mathrm{e}^{+}$ionization followed by $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation ($2 \cdot 5 \mathrm{II} \mathrm{KeV} \gamma \mathrm{f}$).
In case of oPs formation, the time between the two signals can be enough to be seen in the single event's PS with the DC time resolution ($\approx 2 n s$).

We developed a fit which searches for a double bump structure in the single event PS. Using the ${ }^{60} \mathrm{Co}$ cumulative PS, we build a reference with two signals (normalized as IMeV for the $2^{\text {nd }}$, remaining energy for the $I^{\text {st }}$) separated by a $\Delta \mathrm{t}$. The fitted $\Delta \mathrm{t}$ value gives the oPs lifetime for that event.
— $1^{\text {st }}$ bump, — $2^{\text {nd }}$ bump, — Total PS, Fit and Chi-square with MINUIT.

Applying the fit to all the neutrino sample we obtained a Δt distribution. The formation probability and a time of life extracted from the $\Delta \mathrm{t}$ distribution are in agreement with the expected values for the DC scintilators.

Conclusions

- Double Chooz, a liquid scintillator reactor anti-neutrino disappearance experiment, studies the oscillation parameter θ_{13} by measuring a deficit in the flux of neutrinos coming from the Chooz nuclear plant.

$$
\sin ^{2}\left(2 \theta_{13}\right)=1.109 \pm 0.039 \text { (Phys. Rev. D 86, 052008-20I2) }
$$

- Double Chooz detects neutrinos' IBDs by looking for a Prompt-Delayed signal. Correlated background from cosmic muons interacting in the detector simulates the IBD signal.
- The Pulse Shape Discrimination (PSD), a technique specific for scintillators relying on the PMT pulses time profile (Pulse shapes), aims to disentangle some backgrounds from the signal, for example using a Gatti analysis.
- My work in Double Chooz mostly consisted in implementing a PSD analysis. Up to now, I have been able to disentangle the Stopping Muons' background and l'm working on a Fast Neutron separation.
- The ortho-Positronium (oPs) can be exploited as a method to separate \mathbf{e}^{+}and \mathbf{e}^{-}events using the distortion in the Pulse Shape induced by the oPs formation.
- We developed a technique (fit) to look at the oPs formation in DC for the first time. With this fit, we measured a formation probability and a mean lifetime in agreement with the ones expected for the Double Chooz scintillators.

Thank you for you attention

Unicamp	CEADSMIRFU	MPK	Tokyo it	IPC RAS		ANL
ufabc	Spp	Heidelerg	Toky Merro U	RRC Kurcha		UChicago
	Sphn	${ }^{\text {RWTH A Aachen }}$	Nigata U			Columbia u
	SED	TU Munchen	Kobe U			Uc Davis
	sis		Tonoku Gakuin			Drexelu
	senac		Hirsshima IT			॥т
	NCRSIN2P3					ksu
	Subatech					LINL
	IPHC					Mit
	ulbrub					U Norre Dame
						UTennessee
						Virginia Tech.

Backup

Muon event:

- Total charge in IV > 30000 DUQ
- Energy in ID > 20 MeV

Valid trigger:

- Not a muon
- Δt w.r.t last muon $>1000 \mu \mathrm{~s}$
- $\quad \mathrm{E}>0.4 \mathrm{MeV}$

Light Noise Rejection:

- MQ/TQ < 0.12
- Qdiff < 30000 DUQ
- RMS(Tstart) < 36 or RMS(Q) < 464-8*RMS(Tstart)

Prompt energy window:

- $0.5<\mathrm{E}<20 \mathrm{MeV}$

OV veto (prompt):

- (if good OV) candidates whose prompt signal is coincident with an OV trigger (fCoincidentOVTrigger $==$ true) are rejected
IV veto (prompt):
- IV PMT multiplicity $>=2$

Scintillator	Composition
Target (10.3 m)	$80 \%_{\text {vol }}$ n-dodecane (99.1%) $20 \%_{\text {vol }}$ o-PXE (ortho-Phenylxylylethane) (99.2%) $4.5 \mathrm{~g} / \mathrm{l} \mathrm{Gd}$-(thd) $)_{3}(\mathrm{Gd}(\mathrm{III})$-tris-(2,2,6,6-tetramethyl- heptane-3,5-dionate)) (sublimed) $0.5 \%_{\mathrm{wt}}$. Oxolane (tetrahydrofuran, THF, > 99.9%) $7 \mathrm{~g} / \mathrm{l}$ PPO (2,5-Diphenyloxazole, neutrino grade) $20 \mathrm{mg} / \mathrm{l}$ bis-MSB (4-bis-(2-Methylstyryl)benzene)
$\mathrm{GC}\left(22.5 \mathrm{~m}^{3}\right)$	$66 \%_{\text {vol }}$ Mineral oil (Shell Ondina 909) $30 \%_{\text {vol }}$ n-dodecane $4 \%_{\text {vol }}$ o-PXE (ortho-Phenylxylylethane) $2 \mathrm{~g} / \mathrm{PPO}$ (2,5-Diphenyloxazole) $20 \mathrm{mg} / \mathrm{l}$ bis-MSB (4-bis-(2-Methylstyryl)benzene)
Buffer (100 m ${ }^{3}$)	$53 \%_{\text {vol }}$ Mineral oil (Shell Ondina 917) $47 \%_{\text {vol }}$ n-paraffins (Cobersol C 70)
Inner Veto (90 m ${ }^{3}$)	$50 \%_{\text {vol }}$ Linear Alkyl Benzene (LAB) $47 \%_{\text {vol }}$ n-paraffins (Cobersol C 70) $2 \mathrm{~g} / \mathrm{l}$ PPO (2,5-Diphenyloxazole) $20 \mathrm{mg} / \mathrm{l}$ bis-MSB (4-bis-(2-Methylstyryl)benzene)

- Total charge in IV >400 DUQ
- ID-IV space coincidence: $\Delta \mathrm{d}<3.7 \mathrm{~m}$
- ID-IV time coincidence (ID - IV): $-110<\Delta \mathrm{t}<-10 \mathrm{nsec}$

Li-9 reduction (prompt)

- Li-9 likelihood < 0.4

Gd Analysis
Multiplicity:

- No valid triggers allowed in the $200 \mu \mathrm{~s}$ preceding the prompt
- Only one trigger (the delayed) in the time window from $0.5 \mu \mathrm{~s}$ to 600
$\mu \mathrm{s}$ following the prompt
- Delayed energy window: $4<\mathrm{E}<10 \mathrm{MeV}$

Coincidence (prompt and delayed):

- Space coincidence: $\Delta \mathrm{R}<100 \mathrm{~cm}$
- Time coincidence: $0.5 \mu \mathrm{~s}<\Delta \mathrm{t}<150 \mu \mathrm{~s}$

FV veto (delayed):

- $\quad \mathrm{E}>0.068$ * $\exp ($ FuncV(time likelihoood)/1.23)

