Recherche de l'émission périodique des pulsars et étude de la violation de l'invariance de Lorentz avec HESS-II

CMIS

Mathieu Chretien Julien Bolmont

Outlook

- 1) Pulsar
- 2) Astronomie gamma au sol
- 3) Sonder la Gravité Quantique avec les pulsars
- **4)Conclusions**

Pulsar

Pulsar De la poussière au pulsar

Découvert en 1967 (J. Bell and A. Hewish, Cambridge Radio telescope)
 Etoiles à neutrons fortement magnétisées en rotation.

Pulsar Le modèle standard *(Goldreich & Julian 1969)*

- Pulsar ≈_Dipole magnétique tournant
 - → Induit E intense
 - → Particules chargées arrachées de l'étoile
 - → Remplissent la magnétosphère
- Régions de densité de charge = 0
 - Accélèrent particules chargées
 - → Rayonnent Y (très) haute energies (rayonnement de courbure, IC, etc..)

- 2 régions d'émission de rayons Υ:
 Polar Cap (Sturrock 1971)
 - → Coupure super-exponentielle dans le spectre des Υ ! (\vec{B} Intense)
 - Outer Gap (Cheng 1986, Sturrock 1971, Romani & Yadigaroglu 1995)
 - → Coupure exponentielle (\vec{B} moins intense)

Pulsar Chronomètrie des pulsars

bin)

phase

(0.01

Emission périodique (faisceau qui balaie la ligne de visée de l'observateur)
 1) Convertir le temps d'arrivée (TOA) dans référentiel du pulsar :

Pulsar Le point de vue Fermi/LAT

• Calorimètre à bords d'un satellite, E_{seuil}>100 MeV

2nd catalogue Fermi : ~117 pulsars en rayons Ŷ (arXiv:1305.4385)
 → Tous un spectre en loi de puissance + coupure exponentielle

Pulsar Le cas spécial du pulsar du Crabe?

- Un des plus puissant en rayons Υ (hémisphère nord)
- Observation de signal pulsé par des Télescopes Cherenkov (au sol):

Astronomie gamma au sol

Astronomie gamma au sol H.E.S.S.

- Réseau de 4 Télescope à imagerie Cherenkov atmosphérique
- Khomas Hochland, Namibia.
- En opération depuis 2004
- Chaque telescopes:
 Mirroirs 107 m²
 960 pixels par camera
- Champ de vue 5°
 E_{seuil} ~100 GeV

Astronomie gamma au sol Mise à niveau H.E.S.S.2

Arrivé d'un monstre au centre du réseau (Sept. 28, 2012)

JRJC 201

 Caractéristiques: → Mirroirs 614 m² → 2048 pixels → 580 tonnes! Champ de vue 3.2° • E_{seuil} ~ 30 GeV

Astronomie gamma au sol Pulsars, le point de vue de H.E.S.S.

Depuis 2004, une variété de sources Galactiques observées par H.E.S.S.
 Malheureusement pas de pulsar!

→ E_{seuil} trop grand

• H.E.S.S.2 devrait être **capable** d'en **détecter** car E_{seuil}~30 GeV .

Si H.E.S.S.2 observe un pulsar, quelle science?

Contraindre les modèles d'émission
 Confirme le comportement du Crabe?

- \rightarrow Un pulsar n'est pas suffisant
- Sonder la Violation d' Invariance de Lorentz (LIV)

k A. Garlick / space-art.co.

Sonder la Gravité Quantique avec les pulsars

Sonder la Gravité Quantique avec les pulsars Violation d'Invariance de Lorentz (LIV)

- Invariance de Lorentz: $c^2 p^2 = E^2$
- Gravité Quantique (QG):

→ Unification de la **Relativité Générale** et la **physique microscopique**.

- Des modèles de QG prédisent une LIV à E~E =1.2x10¹⁹GeV :
 - Théorie des cordes, Gravité Quantique à boucles, etc..

• La Vitesse de la lumière dépend de l'énergie (dévlpt. de v au 2nd ordre):

 $v = \delta E / \delta p = c (1 - \xi (E / E_{planck}) - \zeta (E / E_{planck})^2)$

 $\xi(\zeta) < 0$ Plus vite que la lumière !

 $\xi(\zeta)>0$ Moins vite que la lumière..

Sonder la Gravité Quantique avec les pulsars LIV et dispersion dans le vide

- 2 photons d'énergies E_1 and $E_2(>E_1)$ émis au temps t
- → Observés avec délai relatif $\Delta t_{LV} = t_2 t_1$ (>0 or <0)

Sonder la Gravité Quantique avec les pulsars Sensibilité au LIV

Energie de Gravité Quantique

- $\rightarrow E_{QG} >> E_{planck}$: pas de LIV
- → Sensibilité d'une expérience au LIV déterminée pour l'hypothèse E_{QG} >> E_{planck}

• Figure de mérite : (correction 1^{er} ordre)

 $\xi \approx \frac{c E_p}{d} \frac{\Delta t}{\Delta E}$ Bras de levie

Echelle de variabilité temporelle de la source

Bras de levier en énergie

Distance de la source

- Meilleur sensibilité:
- → Variabilité temporelle rapide
- → Grandes distances
- Sources énergétiques

Sonder la Gravité Quantique avec les pulsars Tests de LIV avec les pulsars

- Sources galactiques mais bonnes sondes tout de même:
 - → Possible large ΔE
 - → Accumule beaucoup de statistiques (≠ variabilité aléatoire)
 - → At mesuré avec grande précision

Sonder la Gravité Quantique avec les pulsars La méthode

Adaptée de Martinez & Errando (Astropart.Phys. 31 (2009) 226)

$$L = \prod_{i} P(E, \Phi)$$

Sonder la Gravité Quantique avec les pulsars Le(s) Modèle(s)

Phasogramme

- →1 pulse gaussien, µ=0.500
- $\Rightarrow \sigma = 2.10^{-2}$ (phase rotationelle)

→ 30 GeV- 1TeV, Loi de Puissance

$$\Rightarrow \frac{dN}{dE} = A (E/E_0)^{-\Gamma}, \Gamma = 3.3$$

 signal/fond (fond de rayons cosmiques, "gamma like") model B1: S/B=∞ model B2: S/B=1 pour Φ ∈ μ +- 2.5σ
 → Pas de LIV pour le fond de protons

Acceptance & résolution
 →H.E.S.S.2 mono
 →ΔE/E ~ 35%

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité (résultats)

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité (résultats)

E _{QG} ^{95% LL} (GeV) canditats H.E.S.S.2	1 ^{er} ordre		2 nd ordre	
	S/B=∞	S/B=1	S/B=∞	S/B=1
Crab	1.04x10 ¹⁸	5.47x10 ¹⁷	1.74x10¹⁰	1.48x10 ¹⁰
PSR J1826-1256*	< 3.18x10 ¹⁸	< 1.83x10 ¹⁸	< 3.19x10 ¹⁰	< 2.72x10 ¹⁰
PSR J1709-4429	3.19x10 ¹⁷	1.84x10 ¹⁷	1.01x10 ¹⁰	8.63x10 ⁹
PSR J1809-2332	1.64x10 ¹⁷	9.5x10 ¹⁶	7.25x10 ⁹	6.20x10 ⁹
Vela	4.69x10 ¹⁶	2.71x10 ¹⁶	3.87x10 ⁹	3.31x10 ⁹

* from published upper limit on distance (Fermi 2nd year catalog)

Conclusions

- Premières données H.E.S.S.2 pour quelques pulsars (Crabe, Vela)
- → Besoin de les comprendre, calibration pas encore terminée.
- Dans le cas d'une observation positive, possibilité de contraindre modèle d'émission
 > Est-ce que d'autres pulsars suivent le même comportement que le Crabe > 25 GeV?
- Premières estimations de sensibilité au LIV avec les pulsars encourageantes.
 Crabe: ~1 ordre de grandeur en dessous E_{planck}
- Délais intrisèques de la source: problème majeur pour la recherche de LIV
 Pulsars offrent opportunité de les distinguer (ralentissement du pulsar)

Back-up slides Surface effective H.E.S.S.

- A très hautes énergies, flux très faible => Requiert une grande surface de collection
- Surface effective de collection
- → déterminée par "l' éclairement" Cherenkov au sol
- dépend de E_r et $\theta_{zenithal}$

Back-up slides Trigger modes

- Hybrid
- → E⁻_{seuil} plus haute
- Accès aux énergies plus hautes

• Mono

- → E_{seuil} plus basse
- Accès aux énergies les plus basses

Back-up slides Séparer délais de LIV et intrinsèque à la source

- LIV delay:
- → P(t)=P+ dP/dt t and $\Delta \Phi(t)=\Delta t/P(t)$ in pulsar frame
- $\Delta \Phi$ decreases with time for LIV delays.
- Source Intrinsic delay:
- $\Delta \Phi$ =Constant in pulsar frame (if not correlated with period increase)
- → No change with time

The High Energy Stereoscopic System (H.E.S.S.) Candidats pulsar pour H.E.S.S.2

- 2nd Calatogue Fermi des pulsars (arXiv:1305.4385)
- → Extrapole spectres aux énergies H.E.S.S.2 avec Loi de Puissance Brisée

- Outil de simulation de pulsars avec Monte Carlo H.E.S.S.2 en dév. :
- Test des performances
- Validation de la chaine d'analyse

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité (simulation Monte Carlo)

• On injecte un "phase lag" φ_n^{injec} de -0.05 à 0.05 TeV⁻¹(-2).

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité (simulation Monte Carlo)

2 intervalles : basse énergie (30 –55 GeV) & haute énergie (55 GeV–1 TeV)
 ~2000 photons pulsés dans chaque intervalles

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité (simulation Monte Carlo)

Backup slides Calibration curves

Backup slides

Distribution of reconstructed phase lag (no LIV)

37

Backup slides Distribution of reconstructed phase lag (no LIV)

38

Prospect for H.E.S.S.2 Calibration of confidence intervals

- Improper coverage (frequentist interpretation) ?
- Phasogram Template uncertainties
- Spectrum parametrization

Refine threshold on -2∆ln(L) to get proper coverage.
 →Derive mean upper/lower limits on linear and quadratic phase lag parameter
 →Lower limits on quantum gravity scale E_{OG}

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité ("phase lag")

- Pour chaque réalisations:
- → Limites à 95% CL sur le paramètre de "phase lag" dérivées de -2∆ln(L).
- 1) Limite inférieur : "plus vite que la lumière"
- 2) Limite supérieur : "moins vite que la lumière"
- → Doivent avoir le bon "coverage"

Sonder la Gravité Quantique avec les pulsars Etude de sensibilité ("phase lag")

On dérive les limites à 95% CL

