Study of ultra high energy cosmic ray with AERA Auger Engineering Radio Array

Jennifer Maller on behalf the Pierre Auger Collaboration

PIERRE

Recent results

Energy spectrum at high energy

Cut-off:

- Interaction with the CMB?
- Maximum energy reachable by the source ?

Recent results

Composition

Auger: heaviest nuclei at high energy

TA: end of the spectrum compatible with protons

Recent results

Arrival directions

Northern hemisphere

→ HiRes: compatibility with an isotropic flux (with a 95% confidence level)

→ TA: no significant deviation observed from an isotropic behavior

Southern hemisphere

→ Pierre Auger observatory:
A correlation with AGN is observed with a degree of about 30%

Air shower development

Air shower measurement **challenge**: **composition** of primary cosmic rays

→ Origin and production mechanisms

Radio technics sensitive to the shower development

→ FD-like measurement but with a much higher duty cycle

Aim: measure observable sensitive to the nature of the primary cosmic ray

 $\rightarrow X_{max}, X_{inf}$

ground level

Air shower measurement **challenge**: **composition** of primary cosmic rays

→ Origin and production mechanisms

Radio technics sensitive to the shower development

→ FD-like measurement but with a much higher duty cycle

Aim: measure observable sensitive to the nature of the primary cosmic ray

Auger Engineering Radio Array

The Pierre Auger Observatory

Hybrid air-shower detector covering 3000 km²:

- 24 fluorescence's telescopes (FD) on 4 sites

- 1660 water tanks (SD: surface detector) – grid size: 1.5 km

- 100% of efficiency at 3 EeV

Low energy enhancement, sensitive to 0.1 < E < 10 EeV,

located near Coihueco:

- **HEAT**: 3 high elevation fluorescence telescopes

- **Infill array:** water tanks with a reduced grid size: 750 m

- AMIGA: muon detector

- AERA \rightarrow E > 0.1 EeV

Radiodetection in the MHz range

Radiodetection mechanisms in the MHz range

Geomagnetic effect

Charge excess effect

Unidirectional polarization → Aligned with

the direction of $\boldsymbol{v} \times \boldsymbol{B}$

Radial polarization with respect to the shower axis

UHECR2012 – Ad van den Berg

Coherent radio pulse detectable at the ground level

MHz - experiments @ Auger

AERA: Auger Engineering Radio Array

Objectives:

- Radiodetection of cosmic rays with E > 0.1 EeV
- Disentangle emission mechanisms
- Primary cosmic ray characteristics (arrival direction, energy, nature...)
- Test the performances of a large radio array

Setup 1st stage – 0.5 km²

Dense core installed in 2010, taking data since spring 2011: **24 stations** spaced by **144 m** composed of :

- An antenna (LPDA) measuring both EW NS polarizations in the **30 - 80 MHz** band
- An **EMC box** containing the **electronics** to prevent triggering of the station by RFI from the embedded electronics
- **Solar panels and batteries** for power supply
- **GPS** for precise time measurement

MHz - experiments @ Auger

AERA: Auger Engineering Radio Array

Objectives:

- \circ Radiodetection of cosmic rays with E > 0.1 EeV
- Disentangle emission mechanisms
- Primary cosmic ray characteristics (arrival direction, energy, nature...)
- Test the performances of a large radio array

Setup 2nd stage – 6 km²

Deployed since May 2013.

100 new stations installed around AERA24

→ Equipped with the CODALEMA-like Butterfly antenna

Scintillator pair in 40 of the new stations

Auger Engineering Radio Array

Data selection

Data dominated by man-made background

- → Saturation of bandwidth and disk
- → Increasing of the dead time

500 Hz of level 2 triggers

→ Data rate written to disk: 1 Mb/s

AERA 2

Development of a selection method of coincident events between SD and AERA (SD triggered events).

Idea: having coincidences lists - few days after the data acquisition - with few computations

Development of a selection method of coincidences

- → Using a minimal number of variables
- → Check for the compatibility of the arrival of a shower on both the SD and the AERA arrays.

Method

For each candidate compare:

$$^{\circ} dt_m = t_{SD,m} - t_{RD,m}$$

With the expected time difference

$$\Rightarrow dt_{exp} = t_{SD-RD,exp}$$

Assuming a plane front moving at c:

$$dt_{exp} = -\frac{u(x_{SD,core} - x_{RD}) + v(y_{SD,core} - y_{RD})}{c}$$
 with: $u = \sin \theta \cdot \cos \varphi$ $v = \sin \theta \cdot \sin \varphi$

 $x_{SD,core}$, $y_{SD,core}$, θ and ϕ of SD reconstruction

Expected behavior: $-dt_m$ and dt_{exp} strongly correlated for air shower events

- random difference for background events

Study on AERA stage 1 data

Correlation peak

To reject the random coincidences remaining in the peak

- → Use of a rejection algorithm **developed for RAuger**
- → Use the **time evolution of the signal** in a given time window containing the signal pulse

ERA Uger Engineering Badio Array

To reject the random coincidences remaining in the peak

- → Use of a rejection algorithm **developed for RAuger**
- → Use the **time evolution of the signal** in a given time window containing the signal pulse

To reject the random coincidences remaining in the peak

- → Use of a rejection algorithm **developed for RAuger**
- → Use the **time evolution of the signal** in a given time window containing the signal pulse

1/

To reject the random coincidences remaining in the peak

- → Use of a rejection algorithm **developed for RAuger**
- → Use the **time evolution of the signal** in a given time window containing the signal pulse

ERA

Rise time

Rise time (ns)

Before 220 ns:

80% of the selected events 10% of the whole data set

250

200

Results for AERA stage 1

Polarization studies

→ Emissions processes

Polarization studies

→ Emissions processes

$$R = \frac{\sum_{i=1}^{N} E_{x'}(t_i) E_{y'}(t_i)}{\sum_{i=1}^{N} E_{x'}^2(t_i) + E_{y'}^2(t_i)}$$

Detected shower:

$$\theta, \varphi, E, x_{core}, y_{core}$$

- ☐ Measured **Electric field** in the x (EW) and y (NS) directions
- \rightarrow Deduction of the **Electric field** in the x', y' directions where x' is aligned with the direction of $\mathbf{v} \times \mathbf{B}$ in the horizontal plane

- ☐ Calculation of the R-factor = formula
- \rightarrow By construction: R=0 for a purely geomagnetic emission

Simulated event with same parameters θ , φ , E, x_{core} , y_{core}

- 1- Geomagnetic only
- 2- Geomagnetic + Charge excess

Polarization studies

→ Emissions processes

Better correlation between and R_{data} R_{Sim} when simulation includes charge excess calculations

→ Charge excess signature

ECRS 2012 - Daniël Fraenkel ICRC 2011 - Benoît Revenu ICRC 2013 - Tim Huege

Summary

- ☐ Selection of air shower events detected in coincidence with the SD:
 - → efficient in time and computing
 - → consistent with the previous study
 - → whole analysis can now be kept for really interesting events
- ☐ Rejection algorithm:
 - → need few computations
 - → efficient on several experiments: RAuger, CODALEMA, AERA

Perspectives

- ☐ SD/AERA coincidences analysis
 - → Extend the study to the full data set stage 2 (in progress)
 - → polarization study of the measured electric field (in progress)
- ☐ FD/AERA coincidences study (in progress)
 - → nature of the primary cosmic ray

