Search for strongly-produced superpartners in final states with two same-sign leptons or three leptons with the ATLAS detector using 20 fb-1 of LHC pp collisions at 8 TeV

> Journées de Rencontres des Jeunes Chercheurs 2013 1 - 7 décembre 2013

Otilia Ducu (IFIN-HH Bucharest / CPPM)

Supervisors: Calin Alexa(IFIN-HH), Pascal Pralavorio Thanks to JF Arguin, David Cote, Julien Maurer

Overview

SUSY search in final states with **2 same-sign or 3 leptons** in ATLAS experiment leptons = electrons or muons (no tau)

- Public results \rightarrow CONF note prepared for Moriond 2013 conference
 - Using all 2012 8 TeV data ~ 20.3 fb⁻¹
 - In the coming months a paper will be released → present main improvements wrt. *Moriond analysis*

Contents of the talk

- Natural SUSY concept
- Why 2 same sign leptons final state
- Target models in this analysis

- Signal regions optimization
- Background classification & validation
- Results and interpretation

A natural SUSY spectrum 2 / 19

A natural SUSY spectrum 2 / 19

$t \rightarrow b W$ Why a 2 same-sign lepton analysis? 3 / 19

Two same sign or three leptons production is rare in SM \rightarrow **low background is expected**

Gluinos are Majorana particles $\rightarrow \tilde{g} \rightarrow q \tilde{q}^* / \bar{q} \tilde{q}$ with same probability \rightarrow if there are leptons in the final state \rightarrow same-sign / opposite-sign same probability

3rd generation searches → top quarks (W bosons) in the intermediate state →(SS) leptons, (b-) jets, \mathbb{E}_{T}

Searches including leptons \rightarrow smaller BR but

- \rightarrow can impose looser cuts on jet p_T , E_T or m_T
- \rightarrow can reach uncovered regions of the phase space or compressed spectra

Highly sensitive to physics beyond Standard Model (not only Supersymmetry) ex: Black hole, double charged Higgs, 4th quark generation, same-sign top pairs

Also, a wide variety of SUSY signals can be accessed (see next slide)

Considered susy models 4 / 19

$$\begin{split} \widetilde{g} \to t \widetilde{t_{1}} & t \widetilde{\chi_{1}^{0}} & gluino-mediated stop \to t \widetilde{\chi_{1}^{0}} \\ b \widetilde{\chi_{1}^{\pm}} & gluino-mediated stop \to b \widetilde{\chi_{1}^{\pm}} \\ c \widetilde{\chi_{1}^{0}} & gluino-mediated stop \to b \widetilde{\chi_{1}^{\pm}} \\ b s & gluino-mediated stop \to b s (RPV) \end{split}$$

$$\begin{split} \widetilde{g}(\widetilde{q}) \to qq(q) \widetilde{\chi_{1}^{\pm}} & \widetilde{\ell}^{0} & gluino-mediated (direct) squark \to gau \\ \widetilde{g}(\widetilde{q}) \to qq(q) \widetilde{\chi_{1}^{\pm}} & \widetilde{\ell}^{0} & gluino-mediated (direct) squark \to slep \\ \widetilde{g}(\widetilde{q}) \to qq(q) \widetilde{\chi_{2}^{0}} & direct sbottom (t\widetilde{\chi_{1}^{\pm}}) fixed m_{\widetilde{\chi_{1}^{0}}} \\ \hline t_{1}\widetilde{\chi_{1}^{\pm}} & direct sbottom (t\widetilde{\chi_{1}^{\pm}}) varied m_{\widetilde{\chi_{1}^{0}}} \end{split}$$

$t \rightarrow b W$ Considered susy models 4 / 19

Event selection and signal regions definition 5 / 19

Event selection

- \rightarrow using a combination of \mathbb{E}_{T} , single and di-lepton triggers
- \rightarrow select at least 2 same sign leptons with $p_T > 20 \text{ GeV}$

Signal region definition

 \rightarrow for 8TeV release \rightarrow signal region optimization \rightarrow 3 SR depending on b-jet multiplicity

Signal r	region	N _{b-jets}	Signal cuts (discovery case)	Signal cuts (exclusion case)	
SR0b		0	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}$	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}, m_{\text{T}} > 100 \text{ GeV},$	
			$m_{\rm T}$ > 100 GeV, $m_{\rm eff}$ >400 GeV	binned shape fit in m_{eff} for $m_{\text{eff}} > 300 \text{ GeV}$	
SR1b		≥1	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}$	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}, m_{\text{T}} > 100 \text{ GeV},$	
			$m_{\rm T}$ >100 GeV, $m_{\rm eff}$ >700 GeV	binned shape fit in m_{eff} for $m_{\text{eff}} > 300 \text{ GeV}$	
SR3b		≥3	$N_{\rm jets} \ge 4$	$N_{\rm jets} \ge 5,$	
			-	$E_{\rm T}^{\rm miss}$ < 150 GeV or $m_{\rm T}$ < 100 GeV	

Background sources: same – sign signature in Standard Model 6 / 19

Standard Model background in signal regions \rightarrow di-boson and tt + Vector boson

 \rightarrow Small contribution from tt + Higgs, Higgs + Z / W, tri-boson, ...

Background sources: charge flip and fake leptons

Reconstructed electron charge flipped with respect to original electron (not important for $\underline{\mu}$)

- When wrong track used to reconstruct electron
- Transforms opp-sign into same-sign event
- Estimated by weighting OS_{Data} events by charge flip rate (~0.2 %)

7/19

(energy of the tracks or calorimeter cells around lepton)

Charge flip rate

8 / 19

Invariant mass of ee pair [GeV]

Fake leptons estimation

Fake lepton estimation \rightarrow matrix method \rightarrow fully data driven method

- Events are classified in 4 categories depending if each lepton passes / fails the signal lepton definition
- Given r (f) the probabilities that a prompt (fake) lepton passes the isolation criteria
 N[pass,pass] = r² N[real,real] + r f N[real,fake] + f r N[fake,real] + f² N[fake,fake]
 similar relations can be written for N[pass,fail], N[fail,pass], N[fail,fail]
- System of 4 linear equations can be inverted to find number of real/fake leptons :

Need measurement of r, $\mathbf{f} \rightarrow$ done in dedicated samples enriched in real/fake leptons

Electron efficiency identification (r) 10 / 19 Same for muons

r ~ 80 - 90%

Abundant source of real electrons in data : decays of Z boson in electron pairs

- used to select unbiased sample of electrons with loose ID cuts
 - \rightarrow lepton pairs selected under the Z mass peak [80,100] GeV
 - Tightest ID applied to tag electron to remove the background
 - Loose selection for the probe electron used to measure the efficiency as N_{pass} / N_{trial}

Fake lepton rate (f)11 / 19

Electron fake rate $(10 - 30\%) \rightarrow \text{same-sign e}\mu \text{ pairs}$ 10⁶ ≡י Number of entries Data - tag μ ensured to be real 10⁵ Work in progress Diboson TTbarV \rightarrow pass signal cuts, $p_T > 40 \text{ GeV}$ 10⁴ XHiggs corresponding e (probe) most likely a fake 10³ μ passing signal cuts **Muon fake rate** (15%) \rightarrow same-sign $\mu\mu$ pairs 10² both muons are considered alternatively for the meas. 10 - at least 2 jets in the event ; tag μ ensured to be real 20 30 40 50 60 70 80 90 100 $\mathbf{f} = \mathbf{N}_{T} / (\mathbf{N}_{T} + \mathbf{N}_{L}) \rightarrow \text{for } \mu \text{ above } 40 \text{ GeV},$ pt _{Probe} not enough statistic in data $\rightarrow f_{125,401\text{bin}} * 1.16$ (factor measured in Monte – Carlo)

3 b-jets region \rightarrow fake rate in each channel multiplied with factors measured in MC

Real lepton contamination, ie. diBoson, ttbarV, ttbarH estimated from Monte – Carlo while charge flip contamination \rightarrow estimated from data

Background validation

12/19

Number of events 10⁶ Number of events 10 Same Sign e e Same Sign e e ATLAS Preliminary -- Data ATLAS Preliminary - Data 10⁵ SM Total 10⁴ SM Total L dt = 20.7 fb ⁻¹, vs=8 TeV L dt = 20.7 fb ⁻¹, ¥s=8 TeV Charge flip Charge flip Fake leptons Fake leptons 10⁴ 10 Diboson Diboson tt + V tt + V 10³ 10³ 10² 10² 10 E 10 Lepton selection Lepton selection 1 1 data / exp data / exp 0 0 $\frac{3}{1000}$ Number of b-jets with p₁>20 GeV 2 3 4 5 Number of jets with p₁>40 GeV 2 Same Sign e u Same Sign µ µ Same Sign e µ ATLAS Preliminary >0 b-iets ATLAS Preliminary >0 b-iets ATLAS Preliminary 0 b-jets 10⁴ Data Data Data L dt = 20.7 fb ⁻¹, ¥s=8 TeV ZZ SM Total 777 SM Total L dt = 20.7 fb ⁻¹, ¥s=8 TeV 777 SM Total L dt = 20.7 fb ⁻¹, ¥s=8 TeV 10² 102 Fake leptons Fake leptons Fake leptons Diboson Diboson Diboson 10³ Charge flip Charge flip tt + V tt + V Charge flip tt + ∨ 10² 10 10 10 1 Lepton sel, 0 b-jet Lepton sel, >0 b-jets Lepton sel, 0 b-jet 1 00^L 20 50 200 250 300 350Missing transv. momentum E_{T}^{miss} 400 $\begin{array}{ccc} 200 & 250 & 30 \\ \text{Transverse mass } m_{T} \text{ [GeV]} \end{array}$ 100 120 140 16 Transverse momentum p_T [GeV] 50 100 150 50 100 150 300 40 60 80 [GeV]

Number of events / 25 GeV

data / exp

Simultaneous fit method

Perform simultaneous fit across signal regions using Histfitter tool

Model independent results 95% $CL_s \rightarrow calculated using the discovery fit (one bin)$

Model dependent 95% $CL_s \rightarrow$ calculated using the exclusion fit

 \rightarrow fit in m_{eff} – 3 bins SR1b ; overall observed limit \rightarrow all SRs are combined

Results: signal region, model independent 14 / 19

A) Discovery case	SR0b	SR1b	SR3b
Observed events	5	8	4
Expected background events	7.5 ± 3.3	3.7 ± 1.6	3.1 ± 1.6
Expected $t\bar{t} + V$ events	0.5 ± 0.4	2.2 ± 1.0	1.7 ± 0.8
Expected diboson events	3.4 ± 1.0	0.7 ± 0.4	0.1 ± 0.1
Expected fake lepton events	3.4 ± 3.1	$0.3^{+1.1}_{-0.3}$	$0.9^{+1.4}_{-0.9}$
Expected charge mis-measurement events	0.1 ± 0.1	0.5 ± 0.2	0.4 ± 0.1
p_0	0.50	0.11	0.36

Most SRs are dominated by statistical uncertainty on expected number of bkg events

Systematic uncertainties typically dominated by

- Electron fake rate, ttbarV, JES / JER, MC stat diBoson, b-tagging

Not a significant excess observed \rightarrow using simplified models to interpret the results

Results: signal region, model independent 14 / 19

Not a significant excess observed \rightarrow using simplified models to interpret the results

Gluino-stop model (t χ^0_1) off - shell

 \rightarrow the analysis is sensitive to SUSY signal for gluino masses lighter than ~1010 GeV

15 / 19

Gluino-stop model (b χ^{\pm}_{1}) mass degenerate ()

 \rightarrow the analysis is sensitive to SUSY signal for gluino masses lighter than 800 – 900 GeV

16 / 19

Interpretation: model dependent limits

Direct sbottom model

 $\rightarrow m \chi_1^0 = 60 \text{ GeV}, \chi_1^{\pm} \text{ mass is varied} - m_b - m \chi_1^{\pm} \text{ plane}$

17 / 19

Conclusions

SUSY search in final states with 2 same-sign or 3 leptons in ATLAS experiment

Very low SM background \rightarrow high sensitivity to BSM

 \rightarrow half shared between irreducible bkg and mis-reconstructed objects

Signal regions were re-optimized (only 1 in the previous release)

 \rightarrow new SRs with b-jets were added, since many models produce up to 4 b's

Include a larger amount of SUSY signatures

New re-optimization for "Summer paper" \rightarrow see next slide

Changes wrt. Moriond analysis 19 / 19

Event selection

Merge Same-Sign pair and 3 leptons signatures \rightarrow signal regions *re-optimization* Sub-leading lepton $p_T \rightarrow 15$ GeV to improve the sensitivity to compressed spectra Signal leptons \rightarrow isolation variables optimization

Background

Charge flip rate \rightarrow likelihood method

Fake leptons estimation \rightarrow generalized matrix method

Fake b-jets (SR3b) \rightarrow b-jet matrix method as cross-check

Fake leptons \rightarrow Mc-based fake lepton estimation as cross-check

Interpretation, new models were added

Gluino mediated stop decaying to charm (competitive with 0-lepton on the diagonal) Gluino mediated and direct production of $1^{st} / 2^{nd}$ generation squarks decaying to WZWZ (competitive to 1-lepton)

Natural SUSY searches

"Natural" SUSY > Dedicated searches

 \rightarrow Consolidate wrt ICHEP: final results at $\sqrt{s}=7$ TeV, first results with 8fb⁻¹

Interpretation of results : Gtt model Julien Maurer

- Simplified model: ğ→t t χ̃⁰₁ via offshell stop (2.5TeV), BR 100%, other sparticles decoupled
- No excess observed → one can exclude the sets of parameters that predict « too large » number of events in the signal region
- Formalism for deriving limits uses 95% CL_s exclusion, standard at LHC

- Observed limit : what can be excluded given the data observation
- ✓ SUSY theory uncertainty : error on signal cross-section from variations of pdf and renormalization scales
- Expected limit : what would be excluded if observed data was exactly the background prediction
- Exp. uncertainty : error on SM bkg prediction (stat + all systematics)
- → Upper limit on cross-section : this model is not a complete theory. But if this decay chain occurs in a theory, one can compute the cross-section and directly check its viability, since numbers already account for 14 kinematics and detector acceptance