Study of the sensitivity in measuring β_c , one of the angles of the charm unitarity triangle

PhD: Robert Maria

Director: Isabelle Ripp-Baudot

Journées de Recontre des Jeunes Chercheurs, 4 December 2013

Plan of the thesis

- 1) study of CP asymmetry in D⁰ decays with the next generation of Flavour Factories
- 2) tracking studies with PLUME
- 3) tracking performances in Belle II experiment

Study on the sensitivity in measuring β_c

Motivation:

- CP asymmetry in charm sector is expected to be very small (10⁻³)
- -any deviation from this value will signify **new physics**, or physics beyond the Standard Model (SM)

- -the **charm unitarity triangle is unexplored**, because it is almost flat. One of this unitarity triangle angle is β_{r}
- -LHCb has observed unexpected high asymmetry in D⁰ decays

Belle II experiment at SuperKEKB

2 ladders PIXEL detectors (PXD) 4 Double Sided Si-Strip Detectors

- -Located in Japan, upgrade of Belle and KEKB
- Its main goal is testing the SM and searching for new physics

Schedule: 2015 -> start of commissioning 2016 ->start of the physics run

Luminosity:

-instant: 8-10³⁵cm⁻²s⁻¹

-integrated :50 ab⁻¹ ~ 5 years

Beam pips radius = 1 cm

Time dependent asymmetry

Different collision scenarios at Flavour Factories:

3)
$$e^+e^- \rightarrow \Psi(3770) \rightarrow D\overline{D}^0$$
 quantum correlated

Flavour identification and D⁰ oscillations

How to estimate β

We reconstruct D^0 or \overline{D}^0 in a given CP final state :

$$D^{0} \to \pi^{+}\pi^{-} \to arg(\lambda_{f}) = \phi_{mix} + 2\beta_{c,eff}$$

$$D^{0} \to K^{+}K^{-} \to arg(\lambda_{f}) = \phi_{mix}$$

The time dependent asymmetry

$$A(\lambda_f, t, \Gamma, \Delta m) = \frac{N(\overline{D}^0 - > f) - N(D^0 - > f)}{N(\overline{D}^0 - > f) + N(D^0 - > f)}$$

Mixing and decay amplitudes are present

$$\lambda_{f} = \frac{q}{p} \frac{A}{A}$$
Direct CP violation

CP violation in mixing

CP violation in mixing

The simulation

For the expected statistics with 50 ab⁻¹ integrated luminosity (extrapolation from Belle results with 0.7 ab⁻¹):

 $\sim 5.10^6 \text{ D}^* \text{ tagged D}^0 -> \pi^+ \pi^ \sim 12.10^6 \text{ D}^* \text{ tagged D}^0 -> K^+ K^-$

Toy Monte-Carlo simulation (not a Full Simulation with Geant)

Data are simulated with a given λ_f CP parameter.

Measurement: binned likelihood fit of the reconstructed asymmetry as a function of time

Study: impact from time resolution (spatial resolution on the vertex reconstruction) and mistag

Some results

Reconstruction with perfect time resolution and no mistag

Some results

Parameter	Uncertainty (°)			
$Φ(π π) = arg(λ_{ππ})$	1.9			
$Φ(KK) = arg(λ_{KK})$	1.2			
$oldsymbol{eta}_{c,eff}$	1.1			

Mistag used 0.01 Time uncertainty of the detector 0.2 ps

Outlooks

- Change from a binned likelihood method to an unbinned one (currently unsolved numerical issues)
 - Systematics with impact on the results: Δm , Γ
- Translation of time resolution into spatial resolution (because what is reconstructed is a flight distance)
- Ongoing work in the Belle II analysis framework to study D^0 , π_{soft} momentum spectrum and vertex resolution

2) tracking studies with PLUME

PLUME (Pixel Ladder with Ultra Low Material Embedding) devices

The Detector Under Test (DUT) is equipped with 2x6 CMOS pixel sensors (Mimosa26) Size of the chip: 13.7 mm x 21.5 mm

Sensor matrix: 576x1152 pixels with 18.4 µm pitch

Trigger scintillator with $7x7 \text{ mm}^2$ area

2 studies for the ability to reconstruct tracks with PLUME

The gap between 2 adjacent sensors

Study on the tilted tracks

Study of the gap between two sensors for PLUME

The distance with no hits between different adjacent sensors

Sensors	1-2	3-4	5-6	7-8	9-10	11-12
Gap (um)	550	535	545	555	540	555

Study of non-perpendicular tracks

Finding the best possible resolution by aligning parts of the DUT

Tracks at 60°

Deformations along the horizontal axis.

Track u position – hit u position

Track v position – hit v position

hAlignHvTv

80439

7.697

-0.03464

Entries

Mean

RMS

Aligned part of the sensor

Track u position – hit u position

residue vs angle for Chip 6

Outlooks of the study

For 50 µm thin sensors:

-no problems with perpendicular tracks or angles $< 40^{\circ}$

-for angles $> 40^{\circ}$ aligning individually sub-parts of the sensor (sensitive to sensor surface deformations)

-set up an automatic method to align all sensors by dividing them into subparts (reconstruction of the 3D shape of the surface)

-gap region → dead area from the tracking point of view

→ finding the impact on the track reconstruction

Outlooks of the thesis

- estimation of the momentum with energy deposit (dE/dx) in silicon sensors (PXD and SVD) for low momentum tracks (< 100 MeV) in Belle II
- low momentum tracks in Belle II do not reach the Central Drift Chamber, which is the central detector for track reconstruction.
 - -> use another observable (different from helicoidal fit of the track) to estimate momentum -> dE/dx, which varies steeply with momentum at very low momenta
 - -> important for reconstructing the $\pi_{_{soft}}$ from the study on $\beta_{_{c}}$

Thank you for your attention!

Backup slides

Frame and objective of the thesis:

Charged particles in a detector

← elementary particles that forms matter

Why there is more matter than anti matter in the Universe?

CP violation is one of the necessary conditions

The CKM matrix and the unitarity triangle

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{mass}$$

Cabibbo-Kobayashi-Maskawa matrix

Wolfenstein parametrization of the CKM matrix

$$V_{115} \approx 0.22 = \lambda$$

$$V_{cb} \approx 0.06 = A\lambda^2$$

Experimentally determined

At the order of λ^3

$$\begin{array}{ccccc} V_{ud} \sim 1 & V_{us} \sim \lambda & V_{ub} \sim \lambda^3 \\ V_{cd} \sim \lambda & V_{cs} \sim 1 & V_{cb} \sim \lambda^2 \\ V_{cb} \sim \lambda^3 & V_{cs} \sim \lambda^2 & V_{cb} \sim 1 \end{array}$$

$$\begin{array}{|c|c|c|c|c|}\hline 1-\frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho-i\eta) \\ \\ -\lambda & 1-\frac{\lambda^2}{2}-i\eta A^2\lambda^4 & A\lambda^2(1+i\eta\lambda^2) \\ \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \\ \hline \end{array}$$

The charm unitarity triangle

$$V_{CKM}^{T} = V_{CKM}^{T} V_{CKM} = 1 => 3$$
 diagonal relations 6 out of diagonal relations

 $\lambda^3 \lambda^3 \lambda^3$

 $\lambda^4 \lambda^2 \lambda^2$

$$V_{ud}^* \cdot V_{us} + V_{cd}^* \cdot V_{cs} + V_{td}^* \cdot V_{ts} = 0$$

$$V_{ub}^* \cdot V_{ud} + V_{cb}^* \cdot V_{cd} + V_{tb}^* \cdot V_{td} = 0$$

$$V_{us}^* \cdot V_{ub} + V_{cs}^* \cdot V_{cb} + V_{ts}^* \cdot V_{tb} = 0$$

$$V_{ud}^* \cdot V_{td} + V_{us}^* \cdot V_{ts} + V_{ub}^* \cdot V_{tb} = 0$$

$$V_{td}^* \cdot V_{cd} + V_{ts}^* \cdot V_{cs} + V_{tb}^* \cdot V_{cb} = 0$$

$$V_{ud}^* \cdot V_{cd} + V_{us}^* \cdot V_{cs} + V_{ub}^* \cdot V_{cb} = 0 \qquad \lambda \lambda \lambda^5$$

Triangle not in scale

Study on the gap between two sensors for PLUME

Data taken from the PLUME beam test, November 2011 Only the runs with the beam between two sensors were analyzed

