

Search for stops with the CMS experiment

Journées de Rencontre des Jeunes Chercheurs December 4th. 2013

Alexandre Aubin
Supervisors : Caroline Collard, Eric Chabert

Institut Pluridisciplinaire Hubert Curien

Selection Background

Optimization Interpretation

Results

Super-symmetry

- Standard-Model extension
- Boson ↔ fermion symmetry
- Provides dark matter candidate (in RP conservative models)
- Solves the hierarchy problem

Why top squarks?

• "Natural" SUSY $\Rightarrow m_{\tilde{t}} \sim 1 \text{ TeV}$

Stop pair production (1-lepton channel)

$$pp \to \tilde{t}\tilde{t}^* \to \tilde{\chi}^0 \tilde{\chi}^0 + tt$$
$$\to \tilde{\chi}^0 \tilde{\chi}^0 + bbWW$$
$$\to \tilde{\chi}^0 \tilde{\chi}^0 + bb + \ell\nu_\ell + q\bar{q}$$

- Study in the frame of simplified SUSY models (generic result)
- \bullet Production rate divided by 10 every \sim 200 GeV

Looking for a needle in a haystack

Looking for a needle in a haystack About 1 signal event among 100 millions!

$$\begin{array}{ll} pp \to \tilde{t}\tilde{t}^* & \to bbWW + \tilde{\chi}^0\tilde{\chi}^0 \\ & \to \ell + \frac{qqbb}{l} + \nu_\ell\tilde{\chi}^0\tilde{\chi}^0 \end{array}$$

Selection

- 1 lepton (e/μ)
- \geq 4 jets, \geq 1 b-jet
- MET > 100 GeV
- second-lepton vetos
 (isolated track, hadronic τ)

 \Rightarrow signal-to-noise ratio increased to \sim 1 per 15000! (good, but still not enough)

Backgrounds

Other Standard-Model processes have similar final state

 Understanding these processes is crucial to spot and exploit second-order differences

Backgrounds

Need for precise background prediction

- Reliance on Standard-Model measurements and Monte-Carlo generator
- Estimation and checks from the data

Selection criteria	1ℓ	≥2ℓ
0 b-jet	W+jets dominated	-
≥1 b-jet	Signal region	$tt o\! \ell\ell$ dominated

W_{leptonic} = lepton + neutrino

mass(W) ~ 80 GeV

The M_T variable

- $M_T = mass(\ell + MET)$
- ullet try to exploit the leptonic W to discriminate signal and background

W_{leptonic} = lepton + neutrino

mass(W) ~ 80 GeV

 $M_T > 120 \text{ GeV}$

 \Rightarrow signal-to-noise ratio increased to \sim 1 per 200! (good, but can do better)

Use boosted decision tree to combine variables into one

Use boosted decision tree to combine variables into one

• Use \sim 6 different variables in the BDT

Variable	Usage
MET	✓
M_{T2}^W	✓
$min\Delta\Phi$	✓
$HT_T^{\sf ratio}$	✓
hadronic top χ^2	on-shell t
leading b-tagged jet p_T	off-shell $\it t$

• Split the $(m_{\tilde{t}}, m_{\tilde{\chi}^0})$ space in different regions

• Use \sim 6 different variables in the BDT

CITC DD I	
Variable	Usage
MET	✓
M_{T2}^W	✓
$min\Delta\Phi$	✓
HT_T^{ratio}	✓
hadronic top χ^2	on-shell t
leading b-tagged jet p_T	off-shell t

• Split the $(m_{\tilde{t}}, m_{\tilde{\chi}^0})$ space in different regions

 \Rightarrow signal-to-noise ratio increased to 1 per 0.5 \sim 2!

Interpretation

At the end, what you measure is a number of event

Interpretation

At the end, what you measure is a number of event

Interpretation

At the end, what you measure is a number of event

ightarrow what can you really say about the existence or non-existence of the signal?

Not a trivial problem Need use of statistical tools

⇒ no excess is observed Alexandre Aubin

Excluded parameter space

- Other analysis providing complementary results
- Ongoing combination with 0ℓ and 2ℓ channels
- 14 TeV projections predicts 5σ discovery potential up $m_{\tilde{t}}\sim$ 750-950 GeV

Conclusion

- Hope you understand a bit better the different aspects of a search at the LHC
- Stop search: hot topic to search and constrain SUSY
- So far, we probe stop masses up to \sim **650 GeV**.
- Now working on combination with 0-ℓ and 2-ℓ channels, + looking forward to the 13-14 TeV.

Conclusion

- Hope you understand a bit better the different aspects of a search at the LHC
- Stop search : hot topic to search and constrain SUSY
- So far, we probe stop masses **up to** \sim **650 GeV**.
- Now working on combination with 0-ℓ and 2-ℓ channels, + looking forward to the 13-14 TeV.

Thanks! Any questions?