

Journées jeunes chercheurs 2013:

La physique de la saveur dans le MSSM: Un tour d'horizon

Superviseurs:

- → Fawzi Boudjema
- → Björn Herrmann

OUTLINE:

1. Flavor physics within the Standard model

II. Physic beyond the standard model: Motivations

III. Flavor violation within the MSSM

IV. A SU(5) footprint within the up squark sector

What is Flavor exactly?

Standard model: Standard theory of Particle physics:

Based on the gauge group $U(1)_Y \times SU(2)_L \times SU(3)_C$

3 representations of the SM gauge group: $Q(3,2)_{\frac{1}{6}}, U(3,1)_{\frac{2}{3}}, D(3,1)_{-\frac{1}{3}}$

Flavors → 3 replications in the SM of these 3 representations

Flavor physics: Study of the interactions between these different families

Flavor dynamic described by Yukawas Interactions:

$$\mathcal{L}^{\mathrm{F}} = \overline{q^i} D q^j \delta_{ij} + (Y_U)_{ij} \overline{Q^i} U^j H_U + (Y_D)_{ij} \overline{Q^i} D^j H_D + \text{h.c.}$$

Yannick STOLL

Flavor physics within the Standard model:

Two basis are used:

- Weak eigenstates
- Mass eigenstates: Yukawas diagonal

Two unitary transformations needed:

$$Y_U \to V_U Y_U V_U^{\dagger} \qquad Y_D \to V_D Y_D V_D^{\dagger}$$

CKM Matrix \rightarrow Mismatch between V_U, V_D

$$V_{CKM} = V_U V_D^{\dagger}$$

- 3 mixing angles
- → 1 CP violation phase
- Only source of flavor violation in the SM

Beyond the SM: An Invitation 1/2:

The Standard Model:

- → General Framework of particle physics since more than 30 years
- → Theory well establish experimentally (EWPT: $G_F, \rho...$)

But several questions arise:

- → The Gauge Hierarchy Problem
- → What about a Dark Matter Candidate?
- Gauge coupling Unification
- → Baryogenesis
- → Flavor puzzle

One Example:

SM: $1/\alpha_{1,}1/\alpha_{2,}1/\alpha_{3}$ same order at high scale In Reality they disagree by more than 7σ

MSSM: Quasi-Perfect Match at $\sim 10^{16} \text{GeV}$ Encourage the quest for a unified theory

Beyond the SM: An Invitation 2/2:

The (SM) Flavor Puzzle:

$$\begin{split} Y_t \sim 1, Y_c \sim 10^{-2}, & Y_u \sim 10^{-5} \\ Y_b \sim 10^{-2}, Y_s \sim 10^{-3}, & Y_d \sim 10^{-4} \\ Y_\tau \sim 10^{-2}, & Y_\mu \sim 10^{-3}, & Y_e \sim 10^{-6} \\ |V_{us}| \sim 0.2, & |V_{cb}| \sim 0.04, & |V_{ub}| \sim 0.004, & \delta_{KM} \sim 77^\circ \end{split}$$

TeV _____t

MeV

GeV <u>c</u>

u d e

- For Comparison: $g_s \sim 1, g \sim 0.6, g' \sim 0.3, \lambda \sim 1$
- The SM flavors parameters have structure: smallness and hierarchy

Why?: The SM flavor puzzle

All proposals are welcomed to:

stoll@lapth.cnrs.fr

What is exactly SUSY?

- → A Symmetry linking Bosons and Fermions:
- → Introduce a new superpartner of same mass and of opposite statistic for each SM particle

Two New Spinorials Generators:

$$\left\{Q_a, Q_b^{\dagger}\right\} = (\sigma^{\mu})_{ab} P_{\mu}$$

$$Q|boson>=|fermion>$$

- → No Superpartner observed so far:
- If SUSY is realized in Nature, it has to be a broken symmetry at the EW scale Breaking spontaneously SUSY is NO easy task
 - Explicit SB: Only via positive dimensions mass terms namely soft breaking

MSSM:

- Simplest SUSY extension of the SM
- At total (SM+MSSM), 124 free parameters

- True SUSY breaking mechanism unknown
- GUT theories reduces the number of free parameters

MSSM: particle content:

SM Particles		Spin		Spin	Superpartners	
Quarks	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	1/2	Q	0	$egin{pmatrix} ilde{u}_L & ilde{d}_L \end{pmatrix}$	Squarks
	u_R^\dagger	1/2	\bar{u}	0	$ ilde{u}_R^*$	
	d_R^\dagger	1/2	$ar{d}$	0	$ ilde{d}_R^*$	
Leptons	$\begin{pmatrix} u & e_L \end{pmatrix}$	1/2	L	0	$\left(ilde{ u} \ ilde{e}_L ight)$	Sleptons
	e_R^\dagger	1/2	$ar{e}$	0	$ ilde{e}_R^*$	
Higgs	$\begin{pmatrix} H_u^+ & H_u^0 \end{pmatrix}$	0	H_u	1/2	$egin{pmatrix} ilde{H}_u^+ & ilde{H}_u^0 \end{pmatrix}$	Higgsinos
	$\begin{pmatrix} H_d^0 & H_d^- \end{pmatrix}$	0	H_d	1/2	$\left(ilde{H}_d^0 \ \ ilde{H}_d^- ight)$	
Gluon	g	1		1/2	$ ilde{g}$	Gluino
W bosons	W^0,W^\pm	1		1/2	$\tilde{W}^0, \tilde{W}^\pm$	Winos
B boson	B^0	1		1/2	$ ilde{B}^0$	Bino
Graviton	G	2		3/2	$ ilde{G}$	Gravitino

Yannick STOLL

The New physic flavor puzzle 1/2:

See Y Nir presentation: Understanding flavor and CP violation

The SM must certainly be an Effective field theory:

We don't care about the UV dynamics:

- NP effects taking into account through NR operators (dim > 4)
- > Introduce a new scale Λ_{NP} to which the SM is valid.

For example, we expect the dimension 6 operator:

$$\frac{z_{sd}}{\Lambda_{NP}^{2}}(\bar{d_{L}}\gamma_{\mu}s_{L})^{2} + \frac{z_{cu}}{\Lambda_{NP}^{2}}(\bar{c_{L}}\gamma_{\mu}u_{L})^{2} + \frac{z_{bd}}{\Lambda_{NP}^{2}}(\bar{d_{L}}\gamma_{\mu}b_{L})^{2} + \frac{z_{bs}}{\Lambda_{NP}^{2}}(\bar{s_{L}}\gamma_{\mu}b_{L})^{2}$$

Will introduce new contribution to the neutral meson mixing:

$$\frac{\Delta m_B}{m_B} \sim \frac{f_B^2}{3} \times \frac{z_{bd}}{\Lambda_{NP}^2}$$

The New physic flavor puzzle 2/2:

For $z_{ij} \sim 1$:

For $\Lambda_{NP} \sim 1 \text{TeV}$:

$$\mathcal{I}m(z_{sd}) \lesssim 6 \times 10^{-9}$$
 $z_{sd} \lesssim 8 \times 10^{-7}$
 $z_{cu} \lesssim 1 \times 10^{-6}$
 $\mathcal{I}m(z_{bd}) \lesssim 1 \times 10^{-6}$
 $z_{bd} \lesssim 6 \times 10^{-6}$
 $z_{bs} \lesssim 2 \times 10^{-4}$

The flavor structure of NP@TeV must be highly non generic:

New Physic flavor puzzle

Flavour Violation: MSSM case

Arise as in the SM case from a mismatch between the rotation in the up and down squark sectors:

- Matter fields-->Weyl Spinors, need two 6X6 unitary matrix
- In the Up type-Sector:

$$\mathcal{M}_{ ilde{u}}^2 = \left(egin{array}{cc} \mathcal{M}_{ ilde{u},LL}^2 & \left(\mathcal{M}_{ ilde{u},RL}^2
ight)^\dagger \ \mathcal{M}_{ ilde{u},RL}^2 & \mathcal{M}_{ ilde{u},RR}^2 \end{array}
ight)$$

 $\mathcal{M}_{\tilde{u}}^2 = \begin{pmatrix} \mathcal{M}_{\tilde{u},LL}^2 & (\mathcal{M}_{\tilde{u},RL}^2)^{\dagger} \\ \mathcal{M}_{\tilde{u},RL}^2 & \mathcal{M}_{\tilde{u},RR}^2 \end{pmatrix} \qquad \underbrace{\text{With for example:}}_{\left(M_{\tilde{u}LL}^2\right)_{\alpha\beta}} = M_{Q_u\alpha\beta}^2 + \left[\left(\frac{1}{2} - \frac{2}{3}\sin^2\theta_W\right)\cos 2\beta m_Z^2 + m_{u_\alpha}^2 \right] \delta_{\alpha\beta}$

Mass eigenstates given by:

$$diag(m_{\tilde{u}_1}^2, m_{\tilde{u}_2}^2, m_{\tilde{u}_3}^2, m_{\tilde{u}_4}^2, m_{\tilde{u}_5}^2, m_{\tilde{u}_6}^2) = \mathcal{R}^{\tilde{u}} \mathcal{M}_{\tilde{u}}^2 \mathcal{R}^{\tilde{u}^{\dagger}} -$$

$$(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \tilde{u}_4, \tilde{u}_5, \tilde{u}_6,)^T = \mathcal{R}^{\tilde{u}}(\tilde{u}_L, \tilde{c}_L, \tilde{t}_L, \tilde{u}_R, \tilde{c}_R, \tilde{t}_R)$$
 6X6 unitary (up-type) rotation matrix

Soft term

The Minimal flavor violation hypothesis:

The SM FCNC protected, GIM Mechanism:

Neglected:

MFV hypothesis:

- All flavor violation comes from the Yukawas
- Practical way of dealing with flavor constraints
- All soft-breaking terms are diagonal
- Very popular hypothesis but pessimistic

Schematically:

$$\mathcal{M}_{\tilde{u}}^2 = \left(\begin{array}{cc} V_{CKM} M_Q^2 V_{CKM}^{\dagger} & (A_U^2)^{\dagger} \\ A_U^2 & M_U^2 \end{array} \right)$$

A SU(5) footprint in the up-sector 1/2:

SU(5): Most simple extension of the SM gauge group

$$\mathcal{M}_{ ilde{u}}^2 = \left(egin{array}{cc} V_{CKM} M_Q^2 V_{CKM}^\dagger & (A_U^2)^\dagger \ A_U^2 & M_U^2 \end{array}
ight)$$

 A_U : Soft trilinear parameter

If SU(5) holds at GUT or lower scale than: $A_U=A_U^t$ @ $\mathrm{high\ scale}$

- > This relations is not too much spoiled by RGE flow:
- > Study mixing between the second and third generation

RGE induced asymmetry at the weak scale:

$$\Delta^{EW} a_u^{32} \equiv \frac{a_u^{32} - a_u^{23}}{\frac{1}{6} \sum_{i=1}^{6} m_{\tilde{u}_i}} = f(a_u^{32/23}, a_d^{32/23} @GUTscale)$$

Should be "small" in order to asses the SU(5) hypothesis

A SU(5) footprint in the up-sector 2/2:

Bibliography

Supersymmetry:

> I Aitchison: Supersymmetry and the MSSM: An Elementary Introduction

> S Martin : A Supersymmetry Primer

Flavor physics:

- > O Gedalia & G Perez : TASI 2009 Lectures Flavor Physics
- > Isidori et al : Minimal flavor violation: an effective field theory approach

NMFV:

- Herrmann et al: Flavour violating bosonic squark decays at LHC: arXiv:1212.468
- > Calibbi *et al* : Gauge Mediation beyond Minimal Flavor Violation: arXiv: 1304.1453

QUESTIONS?

Non minimal flavor violation: General Idea:

- Flavor violation beyond Yukawas couplings
- Opens up new sources of flavor violation
- Maybe relevant for LHC pheno and/or Dark matter searches

$$\mathcal{M}_{ ilde{u}}^2$$

A priori, controlled by 24 Independent parameters :

$$\begin{split} \delta^{uLL}_{\alpha\beta} &= \frac{M_{Q_{\alpha\beta}}^2}{\sqrt{M_{Q_{\alpha\alpha}}^2 M_{Q_{\beta\beta}}^2}}, \delta^{uRR}_{\alpha\beta} = \frac{M_{U_{\alpha\beta}}^2}{\sqrt{M_{U_{\alpha\alpha}}^2 M_{U_{\beta\beta}}^2}}, \\ \delta^{uRL}_{\alpha\beta} &= \frac{\left(\frac{v_2}{\sqrt{2}}\right) T_{U\beta\alpha}}{\sqrt{M_{U_{\alpha\alpha}}^2 M_{U_{\beta\beta}}^2}} \end{split}$$

May originate from microscopic dynamics:

- GUT theories
- Flavor symmetries

19

20